亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cyber-Physical Optimization-Based Fuzzy Control Strategy for Plug-in Hybrid Electric Buses Using Iterative Modified Particle Swarm Optimization

粒子群优化 计算机科学 稳健性(进化) 数学优化 能源管理 电动汽车 模糊逻辑 最优化问题 燃料效率 工程类 汽车工程 能量(信号处理) 算法 人工智能 生物化学 化学 统计 功率(物理) 数学 物理 量子力学 基因
作者
Chao Yang,Ruihu Chen,Weida Wang,Ying Li,Xun Shen,Changle Xiang
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:8 (5): 3285-3298 被引量:14
标识
DOI:10.1109/tiv.2023.3260007
摘要

The fuel economy of plug-in hybrid electric bus (PHEB) is highly dependent on its energy management strategy (EMS). In practice, the fuzzy control (FC) is widely used in EMS due to its real-time performance and robustness. However, the FC with fixed parameters is difficult to obtain the optimal fuel economy under changing traffic conditions. Regarding this, the control parameters of FC need to be optimized, but this scheme needs to overcome the subsequent calculation burden and time consumption. Therefore, the design of a real-time EMS with parameter optimization is a challenging problem. Inspired by this issue, a cyber-physical optimization-based fuzzy EMS is proposed in this paper. Firstly, a cyber-physical system framework is formulated for PHEB to eliminate the conflict between parameter optimization and real-time operation of EMS. Secondly, considering the uncertainty of the vehicle environment, an IT2 FC with optimization parameters is designed for real-time torque allocation. Thirdly, an iterative modified particle swarm optimization (IMPSO) algorithm is proposed to optimize parameters to accurately and quickly converge to the optimal solution. Additionally, the optimization problem with multi-objective that takes battery life into account is introduced. Finally, simulation and hardware in loop test are used to discuss the performance of the proposed EMS. The results reveal that the IMPSO algorithm can improve the optimization effect. Compared to conventional rule-based and fuzzy-based strategies, the proposed EMS can reduce fuel consumption at least 10% and 4.5%, respectively. Meanwhile, it shows the proposed EMS could reduce the battery capacity loss by 6.42%∼9.72% with a slight increase in fuel consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
blm发布了新的文献求助10
25秒前
小二郎应助blm采纳,获得10
34秒前
无花果应助三点水采纳,获得10
1分钟前
2分钟前
三点水发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
善学以致用应助三点水采纳,获得10
2分钟前
2分钟前
百里幻竹发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
sniffgo完成签到 ,获得积分10
4分钟前
LioXH发布了新的文献求助10
5分钟前
LioXH完成签到 ,获得积分10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
chiyudoubao完成签到,获得积分10
6分钟前
7分钟前
8分钟前
情怀应助五香采纳,获得10
8分钟前
五香完成签到,获得积分10
8分钟前
8分钟前
五香发布了新的文献求助10
9分钟前
9分钟前
ll77完成签到,获得积分10
10分钟前
科研通AI2S应助科研通管家采纳,获得30
10分钟前
10分钟前
10分钟前
小脚丫完成签到 ,获得积分10
11分钟前
11分钟前
11分钟前
11分钟前
11分钟前
11分钟前
11分钟前
11分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505225
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694867