ETCM v2.0: An update with comprehensive resource and rich annotations for traditional Chinese medicine

中医药 药物数据库 鉴定(生物学) 药物重新定位 雅卡索引 计算机科学 传统医学 资源(消歧) 药物发现 医学 数据科学 药品 生物信息学 药理学 替代医学 人工智能 生物 聚类分析 计算机网络 植物 病理
作者
Yanqiong Zhang,Xin Li,Yulong Shi,Tong Chen,Zhijian Xu,Ping Wang,Meng Yu,Wenjia Chen,Bing Li,Zhiwei Jing,Hong Jiang,Lu Fu,Wenjing Gao,Yanhua Jiang,Xia Du,Zipeng Gong,Weiliang Zhu,Hongjun Yang,Haiyu Xu
出处
期刊:Acta Pharmaceutica Sinica B [Elsevier]
卷期号:13 (6): 2559-2571 被引量:35
标识
DOI:10.1016/j.apsb.2023.03.012
摘要

Existing traditional Chinese medicine (TCM)-related databases are still insufficient in data standardization, integrity and precision, and need to be updated urgently. Herein, an Encyclopedia of Traditional Chinese Medicine version 2.0 (ETCM v2.0, http://www.tcmip.cn/ETCM2/front/#/) was constructed as the latest curated database hosting 48,442 TCM formulas recorded by ancient Chinese medical books, 9872 Chinese patent drugs, 2079 Chinese medicinal materials and 38,298 ingredients. To facilitate the mechanistic research and new drug discovery, we improved the target identification method based on a two-dimensional ligand similarity search module, which provides the confirmed and/or potential targets of each ingredient, as well as their binding activities. Importantly, five TCM formulas/Chinese patent drugs/herbs/ingredients with the highest Jaccard similarity scores to the submitted drugs are offered in ETCM v2.0, which may be of significance to identify prescriptions/herbs/ingredients with similar clinical efficacy, to summarize the rules of prescription use, and to find alternative drugs for endangered Chinese medicinal materials. Moreover, ETCM v2.0 provides an enhanced JavaScript-based network visualization tool for creating, modifying and exploring multi-scale biological networks. ETCM v2.0 may be a major data warehouse for the quality marker identification of TCMs, the TCM-derived drug discovery and repurposing, and the pharmacological mechanism investigation of TCMs against various human diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
AlexLee发布了新的文献求助20
3秒前
4秒前
5秒前
在水一方应助砥砺采纳,获得10
6秒前
666666完成签到,获得积分10
6秒前
7秒前
超级不惜完成签到 ,获得积分20
7秒前
7秒前
shixia完成签到,获得积分10
9秒前
鲤鱼夏完成签到,获得积分10
9秒前
10秒前
精明平露发布了新的文献求助10
11秒前
11秒前
今后应助Maomaojiangjiang采纳,获得30
12秒前
12秒前
myczh完成签到,获得积分10
13秒前
sudaxia100发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
郁李完成签到,获得积分10
15秒前
lin发布了新的文献求助10
15秒前
劲秉应助xueer采纳,获得50
16秒前
Anyemzl发布了新的文献求助10
16秒前
豆子发布了新的文献求助30
17秒前
蓝愿发布了新的文献求助10
17秒前
myczh发布了新的文献求助20
17秒前
17秒前
浦肯野应助高兴的若雁采纳,获得10
18秒前
19秒前
超帅蜜蜂应助无辜的嚓茶采纳,获得10
19秒前
木头发布了新的文献求助30
21秒前
高兴的小完成签到,获得积分10
21秒前
不周山完成签到,获得积分10
21秒前
WendyWen发布了新的文献求助50
22秒前
碧蓝的睫毛完成签到,获得积分20
22秒前
李爱国应助结实的面包采纳,获得10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469956
求助须知:如何正确求助?哪些是违规求助? 3063190
关于积分的说明 9081720
捐赠科研通 2753389
什么是DOI,文献DOI怎么找? 1510860
邀请新用户注册赠送积分活动 698134
科研通“疑难数据库(出版商)”最低求助积分说明 698056