Predicting breast cancer types on and beyond molecular level in a multi-modal fashion

乳腺癌 乳腺摄影术 接收机工作特性 医学 癌症 内科学 乳腺超声检查 肿瘤科 人工智能 医学物理学 放射科 计算机科学
作者
Tianyu Zhang,Tao Tan,Luyi Han,Linda Appelman,Jeroen Veltman,Ronni Wessels,Katya M. Duvivier,Claudette E. Loo,Yuan Gao,Xin Wang,Hugo M. Horlings,Regina G. H. Beets‐Tan,Ritse M. Mann
出处
期刊:NPJ breast cancer [Nature Portfolio]
卷期号:9 (1) 被引量:25
标识
DOI:10.1038/s41523-023-00517-2
摘要

Accurately determining the molecular subtypes of breast cancer is important for the prognosis of breast cancer patients and can guide treatment selection. In this study, we develop a deep learning-based model for predicting the molecular subtypes of breast cancer directly from the diagnostic mammography and ultrasound images. Multi-modal deep learning with intra- and inter-modality attention modules (MDL-IIA) is proposed to extract important relations between mammography and ultrasound for this task. MDL-IIA leads to the best diagnostic performance compared to other cohort models in predicting 4-category molecular subtypes with Matthews correlation coefficient (MCC) of 0.837 (95% confidence interval [CI]: 0.803, 0.870). The MDL-IIA model can also discriminate between Luminal and Non-Luminal disease with an area under the receiver operating characteristic curve of 0.929 (95% CI: 0.903, 0.951). These results significantly outperform clinicians' predictions based on radiographic imaging. Beyond molecular-level test, based on gene-level ground truth, our method can bypass the inherent uncertainty from immunohistochemistry test. This work thus provides a noninvasive method to predict the molecular subtypes of breast cancer, potentially guiding treatment selection for breast cancer patients and providing decision support for clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucaslucas完成签到,获得积分10
刚刚
1秒前
默欢发布了新的文献求助10
3秒前
李威龙关注了科研通微信公众号
7秒前
7秒前
7秒前
8秒前
阚曦发布了新的文献求助10
9秒前
执着的墨镜完成签到,获得积分10
12秒前
顾矜应助FDSDK采纳,获得10
12秒前
13秒前
彭彭发布了新的文献求助10
14秒前
轻松友容完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
深情安青应助qliu采纳,获得10
16秒前
16秒前
慕青应助beyondjun采纳,获得10
17秒前
梦醒了完成签到 ,获得积分10
17秒前
杨小黑发布了新的文献求助10
18秒前
柯一一应助科研通管家采纳,获得10
19秒前
19秒前
英俊的铭应助科研通管家采纳,获得20
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
打打应助科研通管家采纳,获得10
19秒前
英姑应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
20秒前
典雅听枫发布了新的文献求助10
20秒前
20秒前
默欢完成签到,获得积分10
21秒前
21秒前
求知的周完成签到,获得积分10
23秒前
cass发布了新的文献求助10
23秒前
乐乐应助乐观囧采纳,获得10
24秒前
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962328
求助须知:如何正确求助?哪些是违规求助? 3508472
关于积分的说明 11141017
捐赠科研通 3241123
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872827
科研通“疑难数据库(出版商)”最低求助积分说明 803382