Early screening of cervical cancer based on tissue Raman spectroscopy combined with deep learning algorithms

宫颈癌 卷积神经网络 算法 恶性肿瘤 医学 癌症 肿瘤科 人工智能 内科学 计算机科学
作者
Zhenping Kang,Jie Liu,Cailing Ma,Chen Chen,Xiaoyi Lv,Cheng Chen
出处
期刊:Photodiagnosis and Photodynamic Therapy [Elsevier]
卷期号:42: 103557-103557 被引量:9
标识
DOI:10.1016/j.pdpdt.2023.103557
摘要

Cervical cancer is the most common reproductive malignancy in the female reproductive system. The incidence rate and mortality rate of cervical cancer among women in China are high. In this study, Raman spectroscopy was used to collect tissue sample data from patients with cervicitis, cervical precancerous low-grade lesions, cervical precancerous high-grade lesions, well differentiated squamous cell carcinoma, moderately differentiated squamous cell carcinoma, poorly differentiated squamous cell carcinoma and cervical adenocarcinoma. The collected data were preprocessed using an adaptive iterative reweighted penalized least squares (airPLS) algorithm and derivatives. Convolutional neural network (CNN) and residual neural network (ResNet) classification models were constructed to classify and identify seven types of tissue samples. The attention mechanism efficient channel attention network (ECANet) module and squeeze-and-excitation network (SENet) module were combined with the established CNN and ResNet network models, respectively, to make the models have better diagnostic performance. The results showed that efficient channel attention convolutional neural network (ECACNN) had the best discrimination, and the average accuracy, recall, F1 and AUC values after five cross-validations could reach 94.04%, 94.87%, 94.43% and 96.86%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rrr发布了新的文献求助10
刚刚
科研通AI5应助zmy采纳,获得10
1秒前
William鉴哲发布了新的文献求助10
1秒前
情怀应助只道寻常采纳,获得10
2秒前
2秒前
cyy完成签到,获得积分20
2秒前
orixero应助小庄采纳,获得10
3秒前
4秒前
侦察兵发布了新的文献求助10
4秒前
司徒元瑶完成签到 ,获得积分10
4秒前
梓榆发布了新的文献求助10
4秒前
4秒前
sweetbearm应助通~采纳,获得10
4秒前
斯文败类应助成就映秋采纳,获得10
5秒前
123456完成签到,获得积分10
5秒前
5秒前
moonlin完成签到 ,获得积分10
5秒前
6秒前
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
8秒前
wanci应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
思源应助蟹黄堡不打折采纳,获得10
8秒前
Lily应助科研通管家采纳,获得40
8秒前
敬老院N号应助科研通管家采纳,获得30
8秒前
zzzq应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
皮皮完成签到 ,获得积分10
8秒前
sallltyyy发布了新的文献求助10
8秒前
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
QPP完成签到,获得积分10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794