A hard segmentation network guided by soft segmentation for tumor segmentation on PET/CT images

分割 人工智能 计算机科学 尺度空间分割 模式识别(心理学) 基本事实 图像分割 特征(语言学) 基于分割的对象分类 计算机视觉 语言学 哲学
作者
Guoyu Tong,Huiyan Jiang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 104918-104918 被引量:6
标识
DOI:10.1016/j.bspc.2023.104918
摘要

Cancer is considered one of the leading causes of death. We can detect cancers through the anatomical and functional imaging provided by PET/CT. However, many tumors in PET/CT are obvious in only one modality, and PET contains many non-lesional hypermetabolic regions, which increases the difficulty of segmentation. Furthermore, traditional two-stage segmentation improves segmentation efficiency by breaking down a segmentation task into two independent subtasks. The second stage loses most of the feature information obtained in the first stage. To address these problems, we propose a hard segmentation network guided by soft segmentation for tumor segmentation on PET/CT images. The proposed network has a soft segmentation branch and a hard segmentation branch. The output of the soft segmentation branch is a logits map composed of gradient values, which is corrected with the soft ground truth by the proposed similarity loss function so that the logits map and the soft ground truth are approximately consistent in the high-dimensional vector space. The output of the hard segmentation branch is the final prediction map. The two branches are connected by a soft segmentation-guided mechanism. This guidance mechanism can generate a soft segmentation-guided map with stable distribution according to the logits map obtained by the soft segmentation branch. We validated the proposed network on two datasets. The Dice of 0.7324 on the public soft tissue sarcoma dataset and 0.7693 on the private liver tumor dataset. By only using U-Net as the backbone network, our method achieves the best performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月是故乡明完成签到,获得积分10
1秒前
柳叶完成签到,获得积分10
2秒前
2秒前
han发布了新的文献求助10
2秒前
zzzllove发布了新的文献求助10
2秒前
2秒前
Ziang_Liu完成签到,获得积分10
3秒前
Daisy发布了新的文献求助10
3秒前
SciGPT应助ceeray23采纳,获得20
3秒前
赘婿应助在和采纳,获得10
4秒前
weifengzhong完成签到,获得积分10
5秒前
djh完成签到,获得积分0
5秒前
5秒前
负责紊完成签到,获得积分10
5秒前
聪123完成签到,获得积分10
5秒前
Jasper应助YM采纳,获得10
5秒前
6秒前
6秒前
6秒前
小晖晖完成签到,获得积分10
6秒前
白兔完成签到,获得积分10
6秒前
Foch完成签到,获得积分10
6秒前
kk完成签到,获得积分10
6秒前
金咪发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
spencer177完成签到,获得积分10
8秒前
眼睛大忆曼完成签到,获得积分10
8秒前
zzzllove完成签到,获得积分10
8秒前
Zarc完成签到,获得积分10
9秒前
9秒前
Foch发布了新的文献求助10
9秒前
FashionBoy应助小猪乔治采纳,获得10
9秒前
Lucas应助Atopos采纳,获得10
10秒前
领导范儿应助joeking采纳,获得10
10秒前
邱卓完成签到,获得积分20
10秒前
10秒前
10秒前
yyq617569158发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997