A hard segmentation network guided by soft segmentation for tumor segmentation on PET/CT images

分割 人工智能 计算机科学 尺度空间分割 模式识别(心理学) 基本事实 图像分割 特征(语言学) 基于分割的对象分类 计算机视觉 语言学 哲学
作者
Guoyu Tong,Huiyan Jiang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:85: 104918-104918 被引量:6
标识
DOI:10.1016/j.bspc.2023.104918
摘要

Cancer is considered one of the leading causes of death. We can detect cancers through the anatomical and functional imaging provided by PET/CT. However, many tumors in PET/CT are obvious in only one modality, and PET contains many non-lesional hypermetabolic regions, which increases the difficulty of segmentation. Furthermore, traditional two-stage segmentation improves segmentation efficiency by breaking down a segmentation task into two independent subtasks. The second stage loses most of the feature information obtained in the first stage. To address these problems, we propose a hard segmentation network guided by soft segmentation for tumor segmentation on PET/CT images. The proposed network has a soft segmentation branch and a hard segmentation branch. The output of the soft segmentation branch is a logits map composed of gradient values, which is corrected with the soft ground truth by the proposed similarity loss function so that the logits map and the soft ground truth are approximately consistent in the high-dimensional vector space. The output of the hard segmentation branch is the final prediction map. The two branches are connected by a soft segmentation-guided mechanism. This guidance mechanism can generate a soft segmentation-guided map with stable distribution according to the logits map obtained by the soft segmentation branch. We validated the proposed network on two datasets. The Dice of 0.7324 on the public soft tissue sarcoma dataset and 0.7693 on the private liver tumor dataset. By only using U-Net as the backbone network, our method achieves the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nikita发布了新的文献求助10
1秒前
Abyssence完成签到,获得积分10
1秒前
在水一方应助Gengar采纳,获得10
2秒前
yang完成签到,获得积分10
2秒前
3秒前
华仔应助cube采纳,获得10
3秒前
考研小白发布了新的文献求助10
5秒前
5秒前
7秒前
NatalyaF发布了新的文献求助10
8秒前
8秒前
milly发布了新的文献求助10
8秒前
9秒前
无花果应助Transition采纳,获得10
11秒前
Bottle完成签到,获得积分10
11秒前
11秒前
忆茶戏发布了新的文献求助10
11秒前
天天快乐应助vikoer采纳,获得10
13秒前
15秒前
乐乐应助我的小宝贝采纳,获得30
15秒前
DAISHU完成签到,获得积分20
16秒前
16秒前
吃个橘子完成签到,获得积分20
17秒前
17秒前
18秒前
Rondab应助22采纳,获得10
19秒前
Rondab应助22采纳,获得10
19秒前
23秒前
李健应助chrysophoron采纳,获得10
23秒前
cube发布了新的文献求助10
24秒前
科研通AI2S应助DAISHU采纳,获得10
25秒前
27秒前
28秒前
Tracy完成签到,获得积分10
28秒前
hhhhuo完成签到,获得积分10
29秒前
29秒前
Yara完成签到 ,获得积分10
30秒前
32秒前
32秒前
CipherSage应助鲜榨花生油采纳,获得10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994080
求助须知:如何正确求助?哪些是违规求助? 3534628
关于积分的说明 11266093
捐赠科研通 3274554
什么是DOI,文献DOI怎么找? 1806388
邀请新用户注册赠送积分活动 883254
科研通“疑难数据库(出版商)”最低求助积分说明 809724