A hard segmentation network guided by soft segmentation for tumor segmentation on PET/CT images

分割 人工智能 计算机科学 尺度空间分割 模式识别(心理学) 基本事实 图像分割 特征(语言学) 基于分割的对象分类 计算机视觉 语言学 哲学
作者
Guoyu Tong,Huiyan Jiang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:85: 104918-104918 被引量:6
标识
DOI:10.1016/j.bspc.2023.104918
摘要

Cancer is considered one of the leading causes of death. We can detect cancers through the anatomical and functional imaging provided by PET/CT. However, many tumors in PET/CT are obvious in only one modality, and PET contains many non-lesional hypermetabolic regions, which increases the difficulty of segmentation. Furthermore, traditional two-stage segmentation improves segmentation efficiency by breaking down a segmentation task into two independent subtasks. The second stage loses most of the feature information obtained in the first stage. To address these problems, we propose a hard segmentation network guided by soft segmentation for tumor segmentation on PET/CT images. The proposed network has a soft segmentation branch and a hard segmentation branch. The output of the soft segmentation branch is a logits map composed of gradient values, which is corrected with the soft ground truth by the proposed similarity loss function so that the logits map and the soft ground truth are approximately consistent in the high-dimensional vector space. The output of the hard segmentation branch is the final prediction map. The two branches are connected by a soft segmentation-guided mechanism. This guidance mechanism can generate a soft segmentation-guided map with stable distribution according to the logits map obtained by the soft segmentation branch. We validated the proposed network on two datasets. The Dice of 0.7324 on the public soft tissue sarcoma dataset and 0.7693 on the private liver tumor dataset. By only using U-Net as the backbone network, our method achieves the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助周大福采纳,获得10
刚刚
1秒前
2秒前
2秒前
2秒前
沉默钢笔发布了新的文献求助10
2秒前
3秒前
猪猪hero发布了新的文献求助10
3秒前
3秒前
Spring完成签到,获得积分10
3秒前
QDWang应助湖月照我影采纳,获得20
4秒前
研友_Lw7MKL完成签到,获得积分10
4秒前
qql发布了新的文献求助10
4秒前
4秒前
苏子饿了完成签到,获得积分10
4秒前
Zhong发布了新的文献求助10
5秒前
6秒前
6秒前
sun完成签到,获得积分10
6秒前
Bob完成签到,获得积分20
6秒前
6秒前
ffeng发布了新的文献求助10
7秒前
永远永远完成签到,获得积分10
7秒前
8秒前
风清扬发布了新的文献求助10
8秒前
简单哒发布了新的文献求助10
8秒前
JamesPei应助Lontano采纳,获得10
8秒前
Nero发布了新的文献求助10
8秒前
和谐的长颈鹿完成签到,获得积分10
8秒前
浩whu完成签到,获得积分10
8秒前
9秒前
无花果应助调皮的沛萍采纳,获得10
9秒前
852应助王巍然采纳,获得10
10秒前
夜幕应助ChemHu采纳,获得20
10秒前
hafcyx发布了新的文献求助10
10秒前
JW发布了新的文献求助30
11秒前
田様应助tiantian采纳,获得10
11秒前
所所应助疯狂飞跃采纳,获得10
12秒前
12秒前
健忘完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343