A hard segmentation network guided by soft segmentation for tumor segmentation on PET/CT images

分割 人工智能 计算机科学 尺度空间分割 模式识别(心理学) 基本事实 图像分割 特征(语言学) 基于分割的对象分类 计算机视觉 语言学 哲学
作者
Guoyu Tong,Huiyan Jiang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 104918-104918 被引量:4
标识
DOI:10.1016/j.bspc.2023.104918
摘要

Cancer is considered one of the leading causes of death. We can detect cancers through the anatomical and functional imaging provided by PET/CT. However, many tumors in PET/CT are obvious in only one modality, and PET contains many non-lesional hypermetabolic regions, which increases the difficulty of segmentation. Furthermore, traditional two-stage segmentation improves segmentation efficiency by breaking down a segmentation task into two independent subtasks. The second stage loses most of the feature information obtained in the first stage. To address these problems, we propose a hard segmentation network guided by soft segmentation for tumor segmentation on PET/CT images. The proposed network has a soft segmentation branch and a hard segmentation branch. The output of the soft segmentation branch is a logits map composed of gradient values, which is corrected with the soft ground truth by the proposed similarity loss function so that the logits map and the soft ground truth are approximately consistent in the high-dimensional vector space. The output of the hard segmentation branch is the final prediction map. The two branches are connected by a soft segmentation-guided mechanism. This guidance mechanism can generate a soft segmentation-guided map with stable distribution according to the logits map obtained by the soft segmentation branch. We validated the proposed network on two datasets. The Dice of 0.7324 on the public soft tissue sarcoma dataset and 0.7693 on the private liver tumor dataset. By only using U-Net as the backbone network, our method achieves the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陶醉薯片完成签到,获得积分20
1秒前
smartbot完成签到,获得积分10
2秒前
请叫我风吹麦浪应助mi采纳,获得10
2秒前
2秒前
YHL发布了新的文献求助10
2秒前
su完成签到,获得积分10
2秒前
2秒前
自信富完成签到,获得积分10
3秒前
乖乖完成签到 ,获得积分10
3秒前
3秒前
liudiqiu应助Ll采纳,获得10
3秒前
灬乔关注了科研通微信公众号
4秒前
张菁完成签到,获得积分10
4秒前
菠萝吹雪应助xiachengcs采纳,获得30
5秒前
洋洋发布了新的文献求助10
5秒前
5秒前
6秒前
威武爆米花完成签到,获得积分10
7秒前
在水一方应助zhaowenxian采纳,获得10
8秒前
SS给SS的求助进行了留言
8秒前
9秒前
11秒前
Linden_bd完成签到 ,获得积分10
11秒前
科研通AI5应助yangyangyang采纳,获得10
11秒前
11秒前
漠北完成签到,获得积分10
11秒前
11秒前
Isabel完成签到 ,获得积分10
12秒前
起风了完成签到,获得积分10
12秒前
13秒前
Zjn-完成签到,获得积分10
13秒前
良辰应助lost采纳,获得10
13秒前
靓丽梦桃完成签到,获得积分20
14秒前
14秒前
0306完成签到,获得积分10
14秒前
李创业完成签到,获得积分10
14秒前
庆次完成签到 ,获得积分10
15秒前
ZY发布了新的文献求助10
15秒前
36456657应助跳跃的罡采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762