Machine-learning-based prediction and optimization of emerging contaminants' adsorption capacity on biochar materials

生物炭 吸附 热解 响应面法 污染 木炭 环境科学 化学 制浆造纸工业 色谱法 有机化学 工程类 生态学 生物
作者
Zeeshan Haider Jaffari,Heewon Jeong,Jaegwan Shin,Jinwoo Kwak,Changgil Son,Yong-Gu Lee,Sang-Won Kim,Kangmin Chon,Kyung Hwa Cho
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:466: 143073-143073 被引量:70
标识
DOI:10.1016/j.cej.2023.143073
摘要

Biochar materials have recently received considerable recognition as eco-friendly and cost-effective adsorbents capable of effectively removing hazardous emerging contaminants (e.g., pharmaceuticals, herbicides, and fungicides) to aquatic organisms and human health accumulated in aquatic ecosystems. In this study, ten tree-based machine learning (ML) models, including bagging, CatBoost, ExtraTrees, HistGradientBoosting, XGBoost, GradientBoosting, DecisionTree, Random Forest, Light gradient Boosting, and KNearest Neighbors, have been built to accurately predict the adsorption capacity of biochar materials toward ECs in aqueous solutions. A very large data set with 3,757 data points was generated using 24 input variables (i.e., pyrolysis conditions for biochar production (3 features), biochar characteristics (3 features), biochar compositions (6 features), and adsorption experimental conditions (12 features)) obtained from the batch adsorption experiments to remove 12 kinds of ECs using 18 different biochar materials. The rigorous evaluation and comparison of the ML model performances shows that CatBoost model had the highest test coefficient of determination (0.9433) and lowest mean absolute error (4.95 mg/g), outperformed clearly all other models. The feature importance analyzed by the shapley additive explanations (SHAP) indicated that the adsorption experimental conditions provided the highest impact on the model prediction for adsorption capacity (41 %) followed by the adsorbent composition (35 %), adsorbent characterization (20 %), and synthesis conditions (3)%). The optimized experimental conditions predicted by the modeling were a N/C ratio of 0.017, BET surface area of 1040 m2/g, content of C(%) contents of 82.1 %, pore volume of 0.46 cm3/g, initial ECs concentration of 100 mg/L, type of pollutant (CAR), adsorption type (Single) and adsorption contact time (720 min).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
4秒前
远_09完成签到 ,获得积分10
4秒前
keyangouderic发布了新的文献求助10
5秒前
大牛牛发布了新的文献求助10
8秒前
香蕉觅云应助123采纳,获得10
11秒前
执着的白曼完成签到 ,获得积分10
12秒前
歇儿哒哒完成签到,获得积分10
12秒前
王子完成签到,获得积分10
12秒前
14秒前
15秒前
Jasper应助豆沙冰采纳,获得10
17秒前
wtf52018发布了新的文献求助10
18秒前
anyunyi发布了新的文献求助10
19秒前
劲秉应助沉醉采纳,获得10
20秒前
22秒前
杳鸢应助pan采纳,获得10
23秒前
25秒前
26秒前
研友_LmAvmL发布了新的文献求助10
26秒前
雪白鸿涛完成签到,获得积分10
26秒前
Ava应助Captain采纳,获得10
30秒前
沉醉发布了新的文献求助10
31秒前
Dusk大寺柯发布了新的文献求助10
32秒前
烟花应助安陌煜采纳,获得30
32秒前
34秒前
34秒前
开放剑鬼完成签到,获得积分10
35秒前
35秒前
anyunyi发布了新的文献求助10
36秒前
36秒前
36秒前
阿巴阿巴发布了新的文献求助10
37秒前
38秒前
38秒前
北夏完成签到 ,获得积分10
39秒前
林川发布了新的文献求助10
39秒前
王kk完成签到 ,获得积分10
40秒前
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465478
求助须知:如何正确求助?哪些是违规求助? 3058648
关于积分的说明 9062429
捐赠科研通 2748998
什么是DOI,文献DOI怎么找? 1508231
科研通“疑难数据库(出版商)”最低求助积分说明 696880
邀请新用户注册赠送积分活动 696535