已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SOCDet: A Lightweight and Accurate Oriented Object Detection Network for Satellite On-Orbit Computing

计算机科学 核(代数) 目标检测 块(置换群论) 推论 卫星 特征提取 人工智能 实时计算 计算机工程 模式识别(心理学) 几何学 数学 组合数学 工程类 航空航天工程
作者
Yanhua Pang,Yamin Zhang,Qinglei Kong,Yi Wang,Bo Chen,Xibin Cao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:10
标识
DOI:10.1109/tgrs.2023.3269642
摘要

In recent years, the performance of the deep learning based object detection models for remote sensing images improves with the increase of the hyperparameter scale. However, the state of the art of detection models are generally too cumbersome to adapt to the resource-constrained satellite platforms, and even general lightweight detection models cannot satisfy performance requirements. To solve those problems, a lightweight and accurate oriented object detection network for satellite on-orbit computing (SOCDet) is proposed from three levels. At the computing unit level, we propose an efficient computing unit Single-kernel Omni-dimensional Dynamic Convolution to make SOCDet feature extraction more efficient. At the network module level, we design a structural reparameterization block based on composite structure reparameterization to improve inference accuracy. A guided attention module for guiding SOCDet is designed to extract object features. We design a lightweight and concise one-stage detection architecture at the network architecture level to accommodate satellite platforms with extremely constrained computing and storage resources. We conduct ablation experiments on the ground server and compare experiments with the state-of-the-art methods on embedded GPU, using DOTA, HRSC2016 and FAIR1M. The experiment results show that SOCDet can achieve 2.36 times faster than the baseline in inference speed with 10.78 more mAP, 72.6% fewer Params and 92.56% fewer floating point operations. Compared with state-of-the-art methods, SOCDet improves the inference speed and derives competitive mAP results with affordable computing capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wrl2023发布了新的文献求助10
1秒前
1秒前
2秒前
天真豪英发布了新的文献求助10
7秒前
解青文发布了新的文献求助10
9秒前
rosalieshi应助NPC采纳,获得30
9秒前
开心的野狼完成签到 ,获得积分10
13秒前
14秒前
我是好人发布了新的文献求助10
15秒前
15秒前
yoga完成签到 ,获得积分10
17秒前
yar应助解青文采纳,获得10
17秒前
cc发布了新的文献求助10
20秒前
李健应助PPP采纳,获得10
26秒前
啊冰发布了新的文献求助10
32秒前
zjsu_zpz完成签到,获得积分10
36秒前
Ava应助qiu采纳,获得10
42秒前
傅荣轩完成签到,获得积分10
47秒前
ding应助颜哈哈采纳,获得30
47秒前
毛毛完成签到,获得积分10
49秒前
50秒前
啊冰关注了科研通微信公众号
52秒前
52秒前
辣味锅包肉发布了新的文献求助100
54秒前
hdn完成签到 ,获得积分10
55秒前
我是好人完成签到,获得积分10
55秒前
Fx完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
善学以致用应助天天向上采纳,获得30
1分钟前
Luoling完成签到 ,获得积分10
1分钟前
小智完成签到,获得积分10
1分钟前
阿萌毛毛发布了新的文献求助10
1分钟前
852应助酷酷的安柏采纳,获得10
1分钟前
深情安青应助靓丽衫采纳,获得30
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310963
求助须知:如何正确求助?哪些是违规求助? 2943728
关于积分的说明 8516304
捐赠科研通 2619056
什么是DOI,文献DOI怎么找? 1431863
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649755