An Improved Genetic-XGBoost Classifier for Customer Consumption Behavior Prediction

计算机科学 特征选择 主成分分析 人工智能 渡线 分类器(UML) 遗传算法 Lasso(编程语言) 机器学习 数据挖掘 万维网
作者
Yue Li,Jianfang Qi,Haibin Jin,Dong Tian,Weisong Mu,Jianying Feng
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:67 (3): 1041-1059 被引量:3
标识
DOI:10.1093/comjnl/bxad041
摘要

Abstract In an increasingly competitive market, predicting the customer’s consumption behavior has a vital role in customer relationship management. In this study, a new classifier for customer consumption behavior prediction is proposed. The proposed methods are as follows: (i) A feature selection method based on least absolute shrinkage and selection operator (Lasso) and Principal Component Analysis (PCA), to achieve efficient feature selection and eliminate correlations between variables. (ii) An improved genetic-eXtreme Gradient Boosting (XGBoost) for customer consumption behavior prediction, to improve the accuracy of prediction. Furthermore, the global search ability and flexibility of the genetic mechanism are used to optimize the XGBoost parameters, which avoids inaccurate parameter settings by manual experience. The adaptive crossover and mutation probabilities are designed to prevent the population from falling into the local extremum. Moreover, the grape-customer consumption behavior dataset is employed to compare the six Lasso-based models from the original, normalized and standardized data sources with the Isometric Mapping, Locally Linear Embedding, Multidimensional Scaling, PCA and Kernel Principal Component Analysis methods. The improved genetic-XGBoost is compared with several well-known parameter optimization algorithms and state-of-the-art classification approaches. Furthermore, experiments are conducted on the University of California Irvine datasets to verify the improved genetic-XGBoost algorithm. All results show that the proposed methods outperform the existing ones. The prediction results provide the decision-making basis for enterprises to formulate better marketing strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
友好的天奇完成签到,获得积分10
2秒前
资新烟完成签到 ,获得积分10
2秒前
3秒前
善良的樱完成签到 ,获得积分10
4秒前
kaustal完成签到,获得积分10
5秒前
华仔应助达尔文采纳,获得10
6秒前
6秒前
7秒前
SciGPT应助zyh采纳,获得10
8秒前
骏马奔驰发布了新的文献求助10
8秒前
Solitude_Z发布了新的文献求助10
9秒前
wlscj应助笨蛋采纳,获得25
10秒前
聪慧的凉面完成签到,获得积分10
11秒前
vv发布了新的文献求助10
11秒前
浮游应助Mars采纳,获得30
11秒前
迷路宛筠完成签到 ,获得积分10
12秒前
小蘑菇应助木木采纳,获得10
12秒前
充电宝应助叶耶耶耶采纳,获得10
13秒前
苹果元槐完成签到 ,获得积分10
14秒前
rita发布了新的文献求助10
14秒前
脑洞疼应助Solitude_Z采纳,获得10
18秒前
彭于晏应助小四喜采纳,获得20
22秒前
华仔应助冷酷莫言采纳,获得10
22秒前
鸿来发布了新的文献求助10
23秒前
24秒前
传奇3应助灿灿的资源采纳,获得10
26秒前
iNk应助mmyhn采纳,获得10
26秒前
子星完成签到,获得积分20
26秒前
27秒前
小海完成签到,获得积分10
27秒前
朱永杰完成签到,获得积分10
29秒前
30秒前
风清扬发布了新的文献求助10
30秒前
清爽雪碧发布了新的文献求助10
31秒前
丘比特应助cherry采纳,获得10
31秒前
自由的鱼完成签到,获得积分10
32秒前
0_o完成签到 ,获得积分10
32秒前
能干的勒完成签到 ,获得积分10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288471
求助须知:如何正确求助?哪些是违规求助? 4440345
关于积分的说明 13824326
捐赠科研通 4322585
什么是DOI,文献DOI怎么找? 2372663
邀请新用户注册赠送积分活动 1368105
关于科研通互助平台的介绍 1331949