An Improved Genetic-XGBoost Classifier for Customer Consumption Behavior Prediction

计算机科学 特征选择 主成分分析 人工智能 渡线 分类器(UML) 遗传算法 Lasso(编程语言) 机器学习 数据挖掘 万维网
作者
Yue Li,Jianfang Qi,Haibin Jin,Dong Tian,Weisong Mu,Jianying Feng
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:67 (3): 1041-1059 被引量:3
标识
DOI:10.1093/comjnl/bxad041
摘要

Abstract In an increasingly competitive market, predicting the customer’s consumption behavior has a vital role in customer relationship management. In this study, a new classifier for customer consumption behavior prediction is proposed. The proposed methods are as follows: (i) A feature selection method based on least absolute shrinkage and selection operator (Lasso) and Principal Component Analysis (PCA), to achieve efficient feature selection and eliminate correlations between variables. (ii) An improved genetic-eXtreme Gradient Boosting (XGBoost) for customer consumption behavior prediction, to improve the accuracy of prediction. Furthermore, the global search ability and flexibility of the genetic mechanism are used to optimize the XGBoost parameters, which avoids inaccurate parameter settings by manual experience. The adaptive crossover and mutation probabilities are designed to prevent the population from falling into the local extremum. Moreover, the grape-customer consumption behavior dataset is employed to compare the six Lasso-based models from the original, normalized and standardized data sources with the Isometric Mapping, Locally Linear Embedding, Multidimensional Scaling, PCA and Kernel Principal Component Analysis methods. The improved genetic-XGBoost is compared with several well-known parameter optimization algorithms and state-of-the-art classification approaches. Furthermore, experiments are conducted on the University of California Irvine datasets to verify the improved genetic-XGBoost algorithm. All results show that the proposed methods outperform the existing ones. The prediction results provide the decision-making basis for enterprises to formulate better marketing strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷映萱发布了新的文献求助30
1秒前
星落完成签到,获得积分10
1秒前
2秒前
苏打发布了新的文献求助10
2秒前
2秒前
2秒前
友好白凡发布了新的文献求助30
2秒前
2秒前
勤恳的访梦完成签到,获得积分10
3秒前
3秒前
twisyouzi发布了新的文献求助10
3秒前
3秒前
3秒前
搁浅发布了新的文献求助10
3秒前
3秒前
bkagyin应助23xyke采纳,获得10
3秒前
4秒前
4秒前
何大大发布了新的文献求助10
4秒前
郑恩熙发布了新的文献求助20
4秒前
思源应助Aki_27采纳,获得10
4秒前
4秒前
sam发布了新的文献求助10
4秒前
所愿皆所得完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
范范发布了新的文献求助10
5秒前
852应助yourhonor采纳,获得10
5秒前
引觞甫完成签到,获得积分10
5秒前
xiaoyunfei完成签到,获得积分20
6秒前
Hello应助忧伤的书白采纳,获得10
6秒前
6秒前
wuchun完成签到,获得积分10
6秒前
皇甫枫发布了新的文献求助10
6秒前
6秒前
科研通AI5应助之之采纳,获得10
7秒前
twisyouzi完成签到 ,获得积分10
7秒前
7秒前
聪明行恶发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576530
求助须知:如何正确求助?哪些是违规求助? 3995739
关于积分的说明 12369777
捐赠科研通 3669687
什么是DOI,文献DOI怎么找? 2022376
邀请新用户注册赠送积分活动 1056390
科研通“疑难数据库(出版商)”最低求助积分说明 943637