An Improved Genetic-XGBoost Classifier for Customer Consumption Behavior Prediction

计算机科学 特征选择 主成分分析 人工智能 渡线 分类器(UML) 遗传算法 Lasso(编程语言) 机器学习 数据挖掘 万维网
作者
Yue Li,Jianfang Qi,Haibin Jin,Dong Tian,Weisong Mu,Jianying Feng
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:67 (3): 1041-1059 被引量:3
标识
DOI:10.1093/comjnl/bxad041
摘要

Abstract In an increasingly competitive market, predicting the customer’s consumption behavior has a vital role in customer relationship management. In this study, a new classifier for customer consumption behavior prediction is proposed. The proposed methods are as follows: (i) A feature selection method based on least absolute shrinkage and selection operator (Lasso) and Principal Component Analysis (PCA), to achieve efficient feature selection and eliminate correlations between variables. (ii) An improved genetic-eXtreme Gradient Boosting (XGBoost) for customer consumption behavior prediction, to improve the accuracy of prediction. Furthermore, the global search ability and flexibility of the genetic mechanism are used to optimize the XGBoost parameters, which avoids inaccurate parameter settings by manual experience. The adaptive crossover and mutation probabilities are designed to prevent the population from falling into the local extremum. Moreover, the grape-customer consumption behavior dataset is employed to compare the six Lasso-based models from the original, normalized and standardized data sources with the Isometric Mapping, Locally Linear Embedding, Multidimensional Scaling, PCA and Kernel Principal Component Analysis methods. The improved genetic-XGBoost is compared with several well-known parameter optimization algorithms and state-of-the-art classification approaches. Furthermore, experiments are conducted on the University of California Irvine datasets to verify the improved genetic-XGBoost algorithm. All results show that the proposed methods outperform the existing ones. The prediction results provide the decision-making basis for enterprises to formulate better marketing strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Mifabric完成签到,获得积分10
2秒前
老肖发布了新的文献求助10
2秒前
5秒前
keyzymes完成签到,获得积分10
7秒前
yemuan完成签到,获得积分10
9秒前
10秒前
星河发布了新的文献求助10
10秒前
10秒前
康康完成签到,获得积分10
11秒前
shishikai发布了新的文献求助10
11秒前
ssy完成签到 ,获得积分10
13秒前
香蕉觅云应助135468采纳,获得10
13秒前
13秒前
小比熊完成签到,获得积分10
14秒前
科研通AI2S应助Jacky采纳,获得10
14秒前
科目三应助lls采纳,获得10
15秒前
云飞扬应助sumu采纳,获得10
15秒前
陶陶发布了新的文献求助10
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
我是老大应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
20秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
21秒前
汉堡包应助科研通管家采纳,获得10
21秒前
斯文败类应助shishikai采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
汉堡包应助sensen采纳,获得10
21秒前
晗晗有酒窝完成签到,获得积分10
21秒前
丘比特应助孤独的珩采纳,获得10
28秒前
hh完成签到,获得积分20
30秒前
pluto应助HM采纳,获得10
30秒前
hh发布了新的文献求助10
32秒前
大个应助过时的映雁采纳,获得10
34秒前
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954469
求助须知:如何正确求助?哪些是违规求助? 3500461
关于积分的说明 11099572
捐赠科研通 3230989
什么是DOI,文献DOI怎么找? 1786217
邀请新用户注册赠送积分活动 869884
科研通“疑难数据库(出版商)”最低求助积分说明 801713