An Improved Genetic-XGBoost Classifier for Customer Consumption Behavior Prediction

计算机科学 特征选择 主成分分析 人工智能 渡线 分类器(UML) 遗传算法 Lasso(编程语言) 机器学习 数据挖掘 万维网
作者
Yue Li,Jianfang Qi,Haibin Jin,Dong Tian,Weisong Mu,Jianying Feng
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:67 (3): 1041-1059 被引量:3
标识
DOI:10.1093/comjnl/bxad041
摘要

Abstract In an increasingly competitive market, predicting the customer’s consumption behavior has a vital role in customer relationship management. In this study, a new classifier for customer consumption behavior prediction is proposed. The proposed methods are as follows: (i) A feature selection method based on least absolute shrinkage and selection operator (Lasso) and Principal Component Analysis (PCA), to achieve efficient feature selection and eliminate correlations between variables. (ii) An improved genetic-eXtreme Gradient Boosting (XGBoost) for customer consumption behavior prediction, to improve the accuracy of prediction. Furthermore, the global search ability and flexibility of the genetic mechanism are used to optimize the XGBoost parameters, which avoids inaccurate parameter settings by manual experience. The adaptive crossover and mutation probabilities are designed to prevent the population from falling into the local extremum. Moreover, the grape-customer consumption behavior dataset is employed to compare the six Lasso-based models from the original, normalized and standardized data sources with the Isometric Mapping, Locally Linear Embedding, Multidimensional Scaling, PCA and Kernel Principal Component Analysis methods. The improved genetic-XGBoost is compared with several well-known parameter optimization algorithms and state-of-the-art classification approaches. Furthermore, experiments are conducted on the University of California Irvine datasets to verify the improved genetic-XGBoost algorithm. All results show that the proposed methods outperform the existing ones. The prediction results provide the decision-making basis for enterprises to formulate better marketing strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
洁净的十八应助小zhu采纳,获得10
1秒前
哲别发布了新的文献求助10
1秒前
李健的粉丝团团长应助cml采纳,获得10
1秒前
韩小小发布了新的文献求助10
1秒前
爆米花应助常青采纳,获得10
2秒前
5秒前
顾矜应助芒果西米露采纳,获得10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助30
7秒前
llwxx完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
Manqing发布了新的文献求助10
10秒前
娟不卷发布了新的文献求助10
10秒前
温暖靖柏应助tulips采纳,获得10
10秒前
11秒前
ding应助jiqiang采纳,获得10
11秒前
12秒前
1111发布了新的文献求助10
12秒前
12秒前
13秒前
开心千青发布了新的文献求助10
13秒前
14秒前
眠心发布了新的文献求助10
15秒前
菓小柒完成签到 ,获得积分10
16秒前
17秒前
小费完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
19秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
领导范儿应助迷人的德天采纳,获得10
21秒前
baobao完成签到,获得积分10
21秒前
义气青丝发布了新的文献求助10
23秒前
娟不卷完成签到,获得积分20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730659
求助须知:如何正确求助?哪些是违规求助? 5324531
关于积分的说明 15319452
捐赠科研通 4877021
什么是DOI,文献DOI怎么找? 2619917
邀请新用户注册赠送积分活动 1569204
关于科研通互助平台的介绍 1525787