An Improved Genetic-XGBoost Classifier for Customer Consumption Behavior Prediction

计算机科学 特征选择 主成分分析 人工智能 渡线 分类器(UML) 遗传算法 Lasso(编程语言) 机器学习 数据挖掘 万维网
作者
Yue Li,Jianfang Qi,Haibin Jin,Dong Tian,Weisong Mu,Jianying Feng
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:67 (3): 1041-1059 被引量:3
标识
DOI:10.1093/comjnl/bxad041
摘要

Abstract In an increasingly competitive market, predicting the customer’s consumption behavior has a vital role in customer relationship management. In this study, a new classifier for customer consumption behavior prediction is proposed. The proposed methods are as follows: (i) A feature selection method based on least absolute shrinkage and selection operator (Lasso) and Principal Component Analysis (PCA), to achieve efficient feature selection and eliminate correlations between variables. (ii) An improved genetic-eXtreme Gradient Boosting (XGBoost) for customer consumption behavior prediction, to improve the accuracy of prediction. Furthermore, the global search ability and flexibility of the genetic mechanism are used to optimize the XGBoost parameters, which avoids inaccurate parameter settings by manual experience. The adaptive crossover and mutation probabilities are designed to prevent the population from falling into the local extremum. Moreover, the grape-customer consumption behavior dataset is employed to compare the six Lasso-based models from the original, normalized and standardized data sources with the Isometric Mapping, Locally Linear Embedding, Multidimensional Scaling, PCA and Kernel Principal Component Analysis methods. The improved genetic-XGBoost is compared with several well-known parameter optimization algorithms and state-of-the-art classification approaches. Furthermore, experiments are conducted on the University of California Irvine datasets to verify the improved genetic-XGBoost algorithm. All results show that the proposed methods outperform the existing ones. The prediction results provide the decision-making basis for enterprises to formulate better marketing strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
维奈克拉应助孟寐以求采纳,获得20
刚刚
刚刚
1秒前
1秒前
1秒前
华仔应助tony采纳,获得30
1秒前
1秒前
大意的大侠完成签到,获得积分20
2秒前
斯文败类应助苏silence采纳,获得10
2秒前
FashionBoy应助燕天与采纳,获得10
2秒前
留胡子的霖完成签到,获得积分10
2秒前
garden发布了新的文献求助10
3秒前
舒服的井完成签到,获得积分10
3秒前
3秒前
Sukey完成签到,获得积分10
3秒前
3秒前
蓝蜗牛完成签到,获得积分10
3秒前
李学完成签到,获得积分10
3秒前
温梦花雨完成签到 ,获得积分10
3秒前
4秒前
4秒前
CodeCraft应助平常亦凝采纳,获得10
4秒前
加油冲完成签到,获得积分10
4秒前
5秒前
今后应助Ryubot采纳,获得10
5秒前
5秒前
Kamal完成签到,获得积分10
5秒前
0110完成签到,获得积分10
5秒前
天涯发布了新的文献求助10
6秒前
6秒前
李爱国应助邹咕噜采纳,获得10
6秒前
6秒前
7秒前
完美世界应助CVEN采纳,获得10
7秒前
zch发布了新的文献求助10
7秒前
上官若男应助soga采纳,获得10
7秒前
111发布了新的文献求助10
7秒前
8秒前
牟若溪发布了新的文献求助10
8秒前
思源应助绊宸采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034