模型预测控制
控制理论(社会学)
稳健性(进化)
非线性系统
气体压缩机
占空比
计算机科学
多元微积分
汽车工业
PID控制器
行驶循环
质子交换膜燃料电池
汽车工程
控制工程
功率(物理)
工程类
电压
燃料电池
电动汽车
温度控制
控制(管理)
人工智能
航空航天工程
化学
生物化学
量子力学
机械工程
物理
电气工程
基因
化学工程
作者
Agostino Mele,Paul Dickinson,M. Mattei
标识
DOI:10.1016/j.ijhydene.2023.03.398
摘要
The fuel cell airpath multivariable control problem of optimally coordinating the electric compressor motor and the back-pressure valve to achieve efficient and safe conditions, for both steady state and transient operation, has not been completely addressed in the literature. This paper proposes a nonlinear model predictive control strategy, implemented via the Garrett Motion proprietary NMPC toolbox, to regulate the oxygen stoichiometry and the cathode pressure of an automotive fuel cell airpath system, while avoiding compressor surge and air starvation. The controller set-points are optimized, using the nonlinear model, to achieve the maximum system power as a function of the operating stack condition. The effectiveness and robustness of the proposed control strategy have been validated by means of a simulated World harmonized Light-duty vehicles Test Cycle (WLTC), under both state feedback and model parameters uncertainties.
科研通智能强力驱动
Strongly Powered by AbleSci AI