Policy gradient empowered LSTM with dynamic skips for irregular time series data

插补(统计学) 缺少数据 计算机科学 强化学习 人工智能 时间序列 回归 机器学习 数据挖掘 系列(地层学) 统计 数学 生物 古生物学
作者
Philip B. Weerakody,Kok Wai Wong,Guanjin Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:142: 110314-110314 被引量:8
标识
DOI:10.1016/j.asoc.2023.110314
摘要

Time series modelling has been successfully handled by Long Short-Term Memory (LSTM) models. Yet their performance can be severely inhibited by the occurrence of missing values prevalent in many real-life datasets. Many previous studies have been dedicated to imputation methods for generating a complete time series sequence, which have their limitations in terms of imputation bias and inaccuracies. In this paper, we propose a new LSTM model incorporating policy gradient (PG) based reinforcement learning called PG-LSTM, which can mitigate the effect of missing data and capture time-based input feature patterns more effectively to improve prediction performance. Inspired by numerous sequence models' successes in improving the efficiency of processing language data by skipping irrelevant tokens, the PG-LSTM introduces dynamic skip connections between LSTM cell states for time series data for classification and regression tasks for the first time. Specifically, the proposed model comprises a modified LSTM cell architecture that can internally call a policy-based reinforcement learning agent to generate a skipping action, allowing the model to dynamically select the optimal subset of hidden and cell states from past states to capture periodic and non-periodic patterns within a time series sequence. Moreover, the PG-LSTM also designs a lightweight imputation layer using a simple missing value imputation strategy while incorporating missing indicators and skipping segments of unimportant data to reduce the limitations associated with imputed data for handling missing values. Our experimental results on regression and classification tasks on time series data with high rates of missing values demonstrate that the PG-LSTM improves performance against current gated recurrent neural networks (RNN) and conventional non-neural network algorithms. The PG-LSTM can enhance AUC by up to 18.5% in the classification task and RMSE by up to 19.3% in the regression task over gated RNN models, respectively. Our findings are also statistically analysed using statistical significance testing with post hoc analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏东湾仔发布了新的文献求助10
刚刚
在我梦里绕完成签到,获得积分10
刚刚
2秒前
3秒前
Criminology34应助安全123采纳,获得10
3秒前
认真的向卉完成签到,获得积分10
3秒前
曹广秀完成签到,获得积分10
3秒前
科研通AI6应助Zhusy采纳,获得10
4秒前
多情的凉面关注了科研通微信公众号
4秒前
韶华若锦完成签到 ,获得积分10
5秒前
蓝天应助琉琉硫采纳,获得10
5秒前
科研通AI6应助kyf采纳,获得10
6秒前
99完成签到,获得积分10
6秒前
胡大嘴先生完成签到,获得积分10
6秒前
科研通AI6应助liujingbin采纳,获得10
6秒前
随便叫点啥完成签到,获得积分10
7秒前
Ma完成签到,获得积分10
7秒前
科研王帝同学完成签到 ,获得积分10
7秒前
陈M雯完成签到 ,获得积分10
8秒前
HMLM完成签到,获得积分10
8秒前
冰雪痕完成签到 ,获得积分10
8秒前
噜噜噜噜噜完成签到,获得积分10
9秒前
Neo完成签到,获得积分10
9秒前
初遇之时最暖完成签到,获得积分10
10秒前
10秒前
liliuuuuuuuu完成签到 ,获得积分10
10秒前
科研小白完成签到,获得积分10
10秒前
大方向秋完成签到,获得积分10
10秒前
Jasper应助好运莲莲采纳,获得10
10秒前
11秒前
chojo发布了新的文献求助10
12秒前
天天快乐应助立青采纳,获得10
15秒前
15秒前
雨寒完成签到 ,获得积分10
15秒前
木光完成签到,获得积分10
15秒前
QQ发布了新的文献求助10
16秒前
缥缈的寄风完成签到 ,获得积分10
16秒前
NexusExplorer应助奈落采纳,获得10
17秒前
彩色凌文发布了新的文献求助10
17秒前
悦己完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565327
求助须知:如何正确求助?哪些是违规求助? 4650317
关于积分的说明 14690672
捐赠科研通 4592233
什么是DOI,文献DOI怎么找? 2519494
邀请新用户注册赠送积分活动 1491964
关于科研通互助平台的介绍 1463183