亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Policy gradient empowered LSTM with dynamic skips for irregular time series data

插补(统计学) 缺少数据 计算机科学 强化学习 人工智能 时间序列 回归 机器学习 数据挖掘 系列(地层学) 统计 数学 生物 古生物学
作者
Philip B. Weerakody,Kok Wai Wong,Guanjin Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:142: 110314-110314 被引量:8
标识
DOI:10.1016/j.asoc.2023.110314
摘要

Time series modelling has been successfully handled by Long Short-Term Memory (LSTM) models. Yet their performance can be severely inhibited by the occurrence of missing values prevalent in many real-life datasets. Many previous studies have been dedicated to imputation methods for generating a complete time series sequence, which have their limitations in terms of imputation bias and inaccuracies. In this paper, we propose a new LSTM model incorporating policy gradient (PG) based reinforcement learning called PG-LSTM, which can mitigate the effect of missing data and capture time-based input feature patterns more effectively to improve prediction performance. Inspired by numerous sequence models' successes in improving the efficiency of processing language data by skipping irrelevant tokens, the PG-LSTM introduces dynamic skip connections between LSTM cell states for time series data for classification and regression tasks for the first time. Specifically, the proposed model comprises a modified LSTM cell architecture that can internally call a policy-based reinforcement learning agent to generate a skipping action, allowing the model to dynamically select the optimal subset of hidden and cell states from past states to capture periodic and non-periodic patterns within a time series sequence. Moreover, the PG-LSTM also designs a lightweight imputation layer using a simple missing value imputation strategy while incorporating missing indicators and skipping segments of unimportant data to reduce the limitations associated with imputed data for handling missing values. Our experimental results on regression and classification tasks on time series data with high rates of missing values demonstrate that the PG-LSTM improves performance against current gated recurrent neural networks (RNN) and conventional non-neural network algorithms. The PG-LSTM can enhance AUC by up to 18.5% in the classification task and RMSE by up to 19.3% in the regression task over gated RNN models, respectively. Our findings are also statistically analysed using statistical significance testing with post hoc analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ling发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
iNk应助mlx采纳,获得30
7秒前
噢斯帕斯基关注了科研通微信公众号
7秒前
11秒前
充电宝应助ling采纳,获得10
14秒前
啦啦啦发布了新的文献求助10
16秒前
19秒前
26秒前
36秒前
46秒前
NattyPoe发布了新的文献求助10
52秒前
1分钟前
1分钟前
1分钟前
lllll1243完成签到,获得积分10
1分钟前
2分钟前
Lucas应助靓丽的魔镜采纳,获得10
2分钟前
寒冷的妙梦完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
欣怡完成签到 ,获得积分10
2分钟前
3分钟前
靓丽的魔镜完成签到,获得积分20
3分钟前
阿洁发布了新的文献求助30
3分钟前
3分钟前
ccm应助阿洁采纳,获得30
3分钟前
3分钟前
4分钟前
ling发布了新的文献求助10
4分钟前
4分钟前
4分钟前
ersheng发布了新的文献求助10
4分钟前
Richard完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
乐乐应助科研通管家采纳,获得10
5分钟前
5分钟前
隐形曼青应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639688
求助须知:如何正确求助?哪些是违规求助? 4749790
关于积分的说明 15007137
捐赠科研通 4797851
什么是DOI,文献DOI怎么找? 2563972
邀请新用户注册赠送积分活动 1522849
关于科研通互助平台的介绍 1482518