清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Policy gradient empowered LSTM with dynamic skips for irregular time series data

插补(统计学) 缺少数据 计算机科学 强化学习 人工智能 时间序列 回归 机器学习 数据挖掘 系列(地层学) 统计 数学 生物 古生物学
作者
Philip B. Weerakody,Kok Wai Wong,Guanjin Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:142: 110314-110314 被引量:8
标识
DOI:10.1016/j.asoc.2023.110314
摘要

Time series modelling has been successfully handled by Long Short-Term Memory (LSTM) models. Yet their performance can be severely inhibited by the occurrence of missing values prevalent in many real-life datasets. Many previous studies have been dedicated to imputation methods for generating a complete time series sequence, which have their limitations in terms of imputation bias and inaccuracies. In this paper, we propose a new LSTM model incorporating policy gradient (PG) based reinforcement learning called PG-LSTM, which can mitigate the effect of missing data and capture time-based input feature patterns more effectively to improve prediction performance. Inspired by numerous sequence models' successes in improving the efficiency of processing language data by skipping irrelevant tokens, the PG-LSTM introduces dynamic skip connections between LSTM cell states for time series data for classification and regression tasks for the first time. Specifically, the proposed model comprises a modified LSTM cell architecture that can internally call a policy-based reinforcement learning agent to generate a skipping action, allowing the model to dynamically select the optimal subset of hidden and cell states from past states to capture periodic and non-periodic patterns within a time series sequence. Moreover, the PG-LSTM also designs a lightweight imputation layer using a simple missing value imputation strategy while incorporating missing indicators and skipping segments of unimportant data to reduce the limitations associated with imputed data for handling missing values. Our experimental results on regression and classification tasks on time series data with high rates of missing values demonstrate that the PG-LSTM improves performance against current gated recurrent neural networks (RNN) and conventional non-neural network algorithms. The PG-LSTM can enhance AUC by up to 18.5% in the classification task and RMSE by up to 19.3% in the regression task over gated RNN models, respectively. Our findings are also statistically analysed using statistical significance testing with post hoc analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡罗特先森完成签到 ,获得积分10
9秒前
宁幼萱完成签到,获得积分10
13秒前
xingran720905关注了科研通微信公众号
16秒前
三磷酸腺苷完成签到 ,获得积分10
16秒前
58秒前
GingerF应助breeze采纳,获得50
1分钟前
jlw完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
alvin完成签到 ,获得积分10
1分钟前
王正浩完成签到 ,获得积分10
1分钟前
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
hank完成签到 ,获得积分10
4分钟前
4分钟前
早早入眠发布了新的文献求助10
4分钟前
早早入眠完成签到,获得积分10
4分钟前
yaoli完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
丹青完成签到 ,获得积分10
5分钟前
Omni完成签到,获得积分10
5分钟前
6分钟前
科研通AI2S应助正直的沛凝采纳,获得10
6分钟前
6分钟前
笑傲完成签到,获得积分10
6分钟前
善良的梦桃完成签到,获得积分10
6分钟前
正直的沛凝完成签到,获得积分10
6分钟前
Leo完成签到,获得积分10
6分钟前
李爱国应助Leo采纳,获得10
6分钟前
张豪杰完成签到 ,获得积分10
6分钟前
7分钟前
善良的梦桃关注了科研通微信公众号
7分钟前
Leo发布了新的文献求助10
7分钟前
斯文败类应助科研通管家采纳,获得10
7分钟前
浮游应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426685
求助须知:如何正确求助?哪些是违规求助? 4540350
关于积分的说明 14172068
捐赠科研通 4458159
什么是DOI,文献DOI怎么找? 2444853
邀请新用户注册赠送积分活动 1435899
关于科研通互助平台的介绍 1413377