Policy gradient empowered LSTM with dynamic skips for irregular time series data

插补(统计学) 缺少数据 计算机科学 强化学习 人工智能 时间序列 回归 机器学习 数据挖掘 系列(地层学) 统计 数学 生物 古生物学
作者
Philip B. Weerakody,Kok Wai Wong,Guanjin Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:142: 110314-110314 被引量:8
标识
DOI:10.1016/j.asoc.2023.110314
摘要

Time series modelling has been successfully handled by Long Short-Term Memory (LSTM) models. Yet their performance can be severely inhibited by the occurrence of missing values prevalent in many real-life datasets. Many previous studies have been dedicated to imputation methods for generating a complete time series sequence, which have their limitations in terms of imputation bias and inaccuracies. In this paper, we propose a new LSTM model incorporating policy gradient (PG) based reinforcement learning called PG-LSTM, which can mitigate the effect of missing data and capture time-based input feature patterns more effectively to improve prediction performance. Inspired by numerous sequence models' successes in improving the efficiency of processing language data by skipping irrelevant tokens, the PG-LSTM introduces dynamic skip connections between LSTM cell states for time series data for classification and regression tasks for the first time. Specifically, the proposed model comprises a modified LSTM cell architecture that can internally call a policy-based reinforcement learning agent to generate a skipping action, allowing the model to dynamically select the optimal subset of hidden and cell states from past states to capture periodic and non-periodic patterns within a time series sequence. Moreover, the PG-LSTM also designs a lightweight imputation layer using a simple missing value imputation strategy while incorporating missing indicators and skipping segments of unimportant data to reduce the limitations associated with imputed data for handling missing values. Our experimental results on regression and classification tasks on time series data with high rates of missing values demonstrate that the PG-LSTM improves performance against current gated recurrent neural networks (RNN) and conventional non-neural network algorithms. The PG-LSTM can enhance AUC by up to 18.5% in the classification task and RMSE by up to 19.3% in the regression task over gated RNN models, respectively. Our findings are also statistically analysed using statistical significance testing with post hoc analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lwei发布了新的文献求助10
刚刚
Hello应助背水采纳,获得10
1秒前
李亚宁完成签到,获得积分10
1秒前
3秒前
刘佳豪完成签到,获得积分10
4秒前
dd完成签到,获得积分10
5秒前
核桃发布了新的文献求助10
5秒前
科研通AI2S应助大吉采纳,获得10
6秒前
蓝莓发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
领导范儿应助El采纳,获得30
8秒前
Lucas应助momo采纳,获得10
9秒前
西西里关注了科研通微信公众号
10秒前
今天也要好好学习完成签到,获得积分10
10秒前
善学以致用应助细心尔蓝采纳,获得10
11秒前
11秒前
wanci应助Ll采纳,获得30
12秒前
研友_ZAVod8完成签到,获得积分10
12秒前
shinian发布了新的文献求助10
12秒前
Maymay完成签到 ,获得积分10
12秒前
lwei完成签到,获得积分20
12秒前
爆米花应助广发牛勿采纳,获得10
12秒前
12秒前
张慧蓉发布了新的文献求助10
13秒前
原山何野发布了新的文献求助10
13秒前
14秒前
852应助xiaoluo采纳,获得10
14秒前
14秒前
赖嘉顿发布了新的文献求助10
14秒前
14秒前
花见月开发布了新的文献求助10
14秒前
15秒前
Jasper应助sunset采纳,获得10
15秒前
16秒前
打打应助盛欢采纳,获得10
16秒前
16秒前
17秒前
乌拉拉关注了科研通微信公众号
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321239
求助须知:如何正确求助?哪些是违规求助? 4463064
关于积分的说明 13888665
捐赠科研通 4354148
什么是DOI,文献DOI怎么找? 2391585
邀请新用户注册赠送积分活动 1385183
关于科研通互助平台的介绍 1354924