亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Policy gradient empowered LSTM with dynamic skips for irregular time series data

插补(统计学) 缺少数据 计算机科学 强化学习 人工智能 时间序列 回归 机器学习 数据挖掘 系列(地层学) 统计 数学 生物 古生物学
作者
Philip B. Weerakody,Kok Wai Wong,Guanjin Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:142: 110314-110314 被引量:8
标识
DOI:10.1016/j.asoc.2023.110314
摘要

Time series modelling has been successfully handled by Long Short-Term Memory (LSTM) models. Yet their performance can be severely inhibited by the occurrence of missing values prevalent in many real-life datasets. Many previous studies have been dedicated to imputation methods for generating a complete time series sequence, which have their limitations in terms of imputation bias and inaccuracies. In this paper, we propose a new LSTM model incorporating policy gradient (PG) based reinforcement learning called PG-LSTM, which can mitigate the effect of missing data and capture time-based input feature patterns more effectively to improve prediction performance. Inspired by numerous sequence models' successes in improving the efficiency of processing language data by skipping irrelevant tokens, the PG-LSTM introduces dynamic skip connections between LSTM cell states for time series data for classification and regression tasks for the first time. Specifically, the proposed model comprises a modified LSTM cell architecture that can internally call a policy-based reinforcement learning agent to generate a skipping action, allowing the model to dynamically select the optimal subset of hidden and cell states from past states to capture periodic and non-periodic patterns within a time series sequence. Moreover, the PG-LSTM also designs a lightweight imputation layer using a simple missing value imputation strategy while incorporating missing indicators and skipping segments of unimportant data to reduce the limitations associated with imputed data for handling missing values. Our experimental results on regression and classification tasks on time series data with high rates of missing values demonstrate that the PG-LSTM improves performance against current gated recurrent neural networks (RNN) and conventional non-neural network algorithms. The PG-LSTM can enhance AUC by up to 18.5% in the classification task and RMSE by up to 19.3% in the regression task over gated RNN models, respectively. Our findings are also statistically analysed using statistical significance testing with post hoc analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
YL完成签到,获得积分10
24秒前
稳重完成签到 ,获得积分10
25秒前
月亮奔我而来完成签到,获得积分10
31秒前
33秒前
35秒前
英姑应助科研通管家采纳,获得10
38秒前
充电宝应助科研通管家采纳,获得10
39秒前
40秒前
BaHdana-发布了新的文献求助10
40秒前
3080完成签到 ,获得积分10
52秒前
alan完成签到 ,获得积分10
52秒前
斐然诗完成签到 ,获得积分10
54秒前
BaHdana-完成签到,获得积分20
56秒前
毛毛毛发布了新的文献求助10
1分钟前
SciGPT应助细腻的甜瓜采纳,获得10
1分钟前
Leo完成签到 ,获得积分10
1分钟前
忧伤的摩托完成签到,获得积分10
2分钟前
2分钟前
2分钟前
小柠檬发布了新的文献求助10
2分钟前
蹦蹦完成签到,获得积分10
2分钟前
3分钟前
毛毛毛完成签到,获得积分10
3分钟前
3分钟前
传奇3应助小柠檬采纳,获得10
3分钟前
3分钟前
3分钟前
VDC应助轻松小刺猬采纳,获得10
3分钟前
3分钟前
3分钟前
文艺的炳完成签到 ,获得积分10
3分钟前
ding应助解觅荷采纳,获得10
3分钟前
4分钟前
解觅荷发布了新的文献求助10
4分钟前
阿皮完成签到,获得积分10
4分钟前
zgznb完成签到,获得积分20
4分钟前
解觅荷完成签到,获得积分20
4分钟前
桐桐应助科研通管家采纳,获得10
4分钟前
4分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154858
求助须知:如何正确求助?哪些是违规求助? 2805666
关于积分的说明 7865599
捐赠科研通 2463838
什么是DOI,文献DOI怎么找? 1311626
科研通“疑难数据库(出版商)”最低求助积分说明 629654
版权声明 601832