Multitarget prediction and optimization of pure electric vehicle tire/road airborne noise sound quality based on a knowledge- and data-driven method

噪音(视频) 计算机科学 音质 残余物 人工神经网络 交通噪声 电动汽车 汽车工程 人工智能 降噪 工程类 算法 语音识别 物理 图像(数学) 功率(物理) 量子力学
作者
Haibo Huang,Teik C. Lim,Jiuhui Wu,Weiping Ding,Jian Pang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:197: 110361-110361 被引量:32
标识
DOI:10.1016/j.ymssp.2023.110361
摘要

With the promotion of pure electric vehicles (PEVs), the overall interior noise level has been gradually reduced. Tire/road noise is increasingly becoming noticeable in PEVs and represents a primary concern for passengers. Vehicle acoustic packages are crucial for suppressing tire/road noise, and numerous studies have focused on improving the acoustic package performance and sound quality of tire/road noise. However, the prediction and optimization of tire/road acoustic comfort have two deficiencies: (1) The characteristics and transfer paths of tire/road noise are complex. Using knowledge-driven methods (such as simulation models) and data-driven methods (such as neural networks) for analysis has difficulty in accuracy parameter acquisition and unexplainable models. (2) The sound quality of tire/road noise is multidimensional. In the development of multitarget prediction models, when multiple targets contradict each other, prediction bias may result from wide differences among targets in the gradient value of the loss function in training. Therefore, in this paper, a knowledge- and data-driven method is proposed, which introduces the knowledge graph technique to develop a vehicle tire/road noise knowledge graph architecture and uses an improved residual network to drive reasoning in the domain knowledge graph. In addition, a multitarget prediction method based on the adaptive balanced learning mechanism for a residual network is proposed, which uses the dynamic weighted average method to adaptively adjust the loss weight of each target according to the convergence speed and learning difficulty of each target. The proposed dual-drive method is applied to predict and optimize the performance of vehicle acoustic package and to further improve the multiple sound quality metrics of tire/road noise. In the experimental validation, the proposed method outperforms the traditional prediction and optimization methods in effectiveness and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小野菌发布了新的文献求助10
1秒前
siyuwang1234完成签到,获得积分10
1秒前
优秀笑寒完成签到,获得积分10
4秒前
YamDaamCaa应助Felix采纳,获得30
6秒前
杨小王完成签到,获得积分10
6秒前
沉静的友灵完成签到,获得积分10
7秒前
宋十一完成签到,获得积分10
8秒前
8秒前
9秒前
瓷儿发布了新的文献求助10
9秒前
10秒前
丘比特应助医者修心采纳,获得10
11秒前
风清扬发布了新的文献求助10
12秒前
李健应助罗小黑采纳,获得10
13秒前
在途中发布了新的文献求助10
13秒前
dwfwq完成签到,获得积分10
13秒前
sci喷涌而出完成签到,获得积分20
13秒前
迈克老狼发布了新的文献求助10
14秒前
Rondab应助武雨寒采纳,获得10
15秒前
沈沈完成签到 ,获得积分10
15秒前
wang完成签到,获得积分10
16秒前
小蘑菇应助风清扬采纳,获得10
18秒前
19秒前
李健应助猪八戒采纳,获得10
20秒前
20秒前
今夜不设防完成签到,获得积分10
21秒前
迅速的访云完成签到 ,获得积分20
22秒前
24秒前
25秒前
吃猫的鱼发布了新的文献求助10
26秒前
27秒前
29秒前
31秒前
清修发布了新的文献求助10
31秒前
cat发布了新的文献求助10
31秒前
32秒前
科研通AI5应助博修采纳,获得10
33秒前
35秒前
36秒前
猪八戒发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967779
求助须知:如何正确求助?哪些是违规求助? 3512913
关于积分的说明 11165458
捐赠科研通 3247930
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578