Multitarget prediction and optimization of pure electric vehicle tire/road airborne noise sound quality based on a knowledge- and data-driven method

噪音(视频) 计算机科学 音质 残余物 人工神经网络 交通噪声 电动汽车 汽车工程 人工智能 降噪 工程类 算法 语音识别 物理 图像(数学) 功率(物理) 量子力学
作者
Haibo Huang,Teik C. Lim,Jiuhui Wu,Weiping Ding,Jian Pang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:197: 110361-110361 被引量:32
标识
DOI:10.1016/j.ymssp.2023.110361
摘要

With the promotion of pure electric vehicles (PEVs), the overall interior noise level has been gradually reduced. Tire/road noise is increasingly becoming noticeable in PEVs and represents a primary concern for passengers. Vehicle acoustic packages are crucial for suppressing tire/road noise, and numerous studies have focused on improving the acoustic package performance and sound quality of tire/road noise. However, the prediction and optimization of tire/road acoustic comfort have two deficiencies: (1) The characteristics and transfer paths of tire/road noise are complex. Using knowledge-driven methods (such as simulation models) and data-driven methods (such as neural networks) for analysis has difficulty in accuracy parameter acquisition and unexplainable models. (2) The sound quality of tire/road noise is multidimensional. In the development of multitarget prediction models, when multiple targets contradict each other, prediction bias may result from wide differences among targets in the gradient value of the loss function in training. Therefore, in this paper, a knowledge- and data-driven method is proposed, which introduces the knowledge graph technique to develop a vehicle tire/road noise knowledge graph architecture and uses an improved residual network to drive reasoning in the domain knowledge graph. In addition, a multitarget prediction method based on the adaptive balanced learning mechanism for a residual network is proposed, which uses the dynamic weighted average method to adaptively adjust the loss weight of each target according to the convergence speed and learning difficulty of each target. The proposed dual-drive method is applied to predict and optimize the performance of vehicle acoustic package and to further improve the multiple sound quality metrics of tire/road noise. In the experimental validation, the proposed method outperforms the traditional prediction and optimization methods in effectiveness and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助欢喜念双采纳,获得10
刚刚
郑波涛完成签到,获得积分10
1秒前
1秒前
foxdaopo完成签到,获得积分10
1秒前
2秒前
lujia发布了新的文献求助10
3秒前
桐桐应助上岸上岸上岸采纳,获得10
3秒前
丘比特应助不爱看采纳,获得10
3秒前
3秒前
所所应助红尘侠客采纳,获得10
4秒前
Evooolet发布了新的文献求助10
4秒前
6秒前
wys完成签到 ,获得积分10
7秒前
啊鲤完成签到,获得积分10
7秒前
宋一c完成签到,获得积分20
7秒前
脑洞疼应助wenlin采纳,获得10
8秒前
机灵的静枫完成签到,获得积分10
8秒前
荔枝发布了新的文献求助10
9秒前
慢慢发布了新的文献求助10
10秒前
mmd完成签到,获得积分10
11秒前
11秒前
轻微完成签到 ,获得积分10
12秒前
12秒前
上岸上岸上岸完成签到,获得积分20
12秒前
13秒前
13秒前
14秒前
14秒前
晶彩完成签到,获得积分10
15秒前
16秒前
不爱看发布了新的文献求助10
16秒前
ylwu2018完成签到,获得积分10
17秒前
劲秉应助友好的天奇采纳,获得20
18秒前
vation发布了新的文献求助10
18秒前
18秒前
小白发布了新的文献求助10
19秒前
19秒前
潘2333完成签到,获得积分20
19秒前
YK完成签到,获得积分10
20秒前
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748536
求助须知:如何正确求助?哪些是违规求助? 3291591
关于积分的说明 10073642
捐赠科研通 3007395
什么是DOI,文献DOI怎么找? 1651600
邀请新用户注册赠送积分活动 786523
科研通“疑难数据库(出版商)”最低求助积分说明 751765