Multitarget prediction and optimization of pure electric vehicle tire/road airborne noise sound quality based on a knowledge- and data-driven method

噪音(视频) 计算机科学 音质 残余物 人工神经网络 交通噪声 电动汽车 汽车工程 人工智能 降噪 工程类 算法 语音识别 物理 图像(数学) 功率(物理) 量子力学
作者
Haibo Huang,Teik C. Lim,Jiuhui Wu,Weiping Ding,Jian Pang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:197: 110361-110361 被引量:31
标识
DOI:10.1016/j.ymssp.2023.110361
摘要

With the promotion of pure electric vehicles (PEVs), the overall interior noise level has been gradually reduced. Tire/road noise is increasingly becoming noticeable in PEVs and represents a primary concern for passengers. Vehicle acoustic packages are crucial for suppressing tire/road noise, and numerous studies have focused on improving the acoustic package performance and sound quality of tire/road noise. However, the prediction and optimization of tire/road acoustic comfort have two deficiencies: (1) The characteristics and transfer paths of tire/road noise are complex. Using knowledge-driven methods (such as simulation models) and data-driven methods (such as neural networks) for analysis has difficulty in accuracy parameter acquisition and unexplainable models. (2) The sound quality of tire/road noise is multidimensional. In the development of multitarget prediction models, when multiple targets contradict each other, prediction bias may result from wide differences among targets in the gradient value of the loss function in training. Therefore, in this paper, a knowledge- and data-driven method is proposed, which introduces the knowledge graph technique to develop a vehicle tire/road noise knowledge graph architecture and uses an improved residual network to drive reasoning in the domain knowledge graph. In addition, a multitarget prediction method based on the adaptive balanced learning mechanism for a residual network is proposed, which uses the dynamic weighted average method to adaptively adjust the loss weight of each target according to the convergence speed and learning difficulty of each target. The proposed dual-drive method is applied to predict and optimize the performance of vehicle acoustic package and to further improve the multiple sound quality metrics of tire/road noise. In the experimental validation, the proposed method outperforms the traditional prediction and optimization methods in effectiveness and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jack潘发布了新的文献求助10
2秒前
6秒前
jack潘完成签到,获得积分10
8秒前
QXS完成签到 ,获得积分10
19秒前
陈秋完成签到,获得积分10
23秒前
luoyukejing完成签到,获得积分10
26秒前
朴素的山蝶完成签到 ,获得积分10
27秒前
宫宛儿完成签到,获得积分10
28秒前
陈秋发布了新的文献求助10
28秒前
XS_QI完成签到 ,获得积分10
30秒前
君无名完成签到 ,获得积分10
34秒前
HHW完成签到 ,获得积分10
45秒前
半壶月色半边天完成签到 ,获得积分10
46秒前
49秒前
kingyuan完成签到,获得积分10
49秒前
49秒前
我心冥冥发布了新的文献求助30
53秒前
MRJJJJ完成签到,获得积分10
55秒前
缓慢雅青完成签到 ,获得积分10
55秒前
行云流水完成签到,获得积分10
55秒前
LvXiaodie完成签到 ,获得积分10
59秒前
marska完成签到,获得积分10
1分钟前
outbed完成签到,获得积分10
1分钟前
1分钟前
1分钟前
kyt完成签到,获得积分10
1分钟前
草上飞完成签到 ,获得积分10
1分钟前
李东东完成签到 ,获得积分10
1分钟前
憂xqc发布了新的文献求助10
1分钟前
高速旋转老沁完成签到 ,获得积分10
1分钟前
科研通AI2S应助憂xqc采纳,获得10
1分钟前
leotao完成签到,获得积分10
1分钟前
追寻念云完成签到 ,获得积分10
1分钟前
红领巾klj完成签到 ,获得积分10
1分钟前
憂xqc完成签到,获得积分10
1分钟前
shame完成签到 ,获得积分10
1分钟前
1分钟前
fuyuhaoy完成签到,获得积分10
1分钟前
ys1111xiao完成签到 ,获得积分10
1分钟前
ys1111完成签到 ,获得积分10
2分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261670
求助须知:如何正确求助?哪些是违规求助? 2902529
关于积分的说明 8319851
捐赠科研通 2572322
什么是DOI,文献DOI怎么找? 1397554
科研通“疑难数据库(出版商)”最低求助积分说明 653851
邀请新用户注册赠送积分活动 632305