Multitarget prediction and optimization of pure electric vehicle tire/road airborne noise sound quality based on a knowledge- and data-driven method

噪音(视频) 计算机科学 音质 残余物 人工神经网络 交通噪声 电动汽车 汽车工程 人工智能 降噪 工程类 算法 语音识别 物理 图像(数学) 功率(物理) 量子力学
作者
Haibo Huang,Teik C. Lim,Jiuhui Wu,Weiping Ding,Jian Pang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:197: 110361-110361 被引量:32
标识
DOI:10.1016/j.ymssp.2023.110361
摘要

With the promotion of pure electric vehicles (PEVs), the overall interior noise level has been gradually reduced. Tire/road noise is increasingly becoming noticeable in PEVs and represents a primary concern for passengers. Vehicle acoustic packages are crucial for suppressing tire/road noise, and numerous studies have focused on improving the acoustic package performance and sound quality of tire/road noise. However, the prediction and optimization of tire/road acoustic comfort have two deficiencies: (1) The characteristics and transfer paths of tire/road noise are complex. Using knowledge-driven methods (such as simulation models) and data-driven methods (such as neural networks) for analysis has difficulty in accuracy parameter acquisition and unexplainable models. (2) The sound quality of tire/road noise is multidimensional. In the development of multitarget prediction models, when multiple targets contradict each other, prediction bias may result from wide differences among targets in the gradient value of the loss function in training. Therefore, in this paper, a knowledge- and data-driven method is proposed, which introduces the knowledge graph technique to develop a vehicle tire/road noise knowledge graph architecture and uses an improved residual network to drive reasoning in the domain knowledge graph. In addition, a multitarget prediction method based on the adaptive balanced learning mechanism for a residual network is proposed, which uses the dynamic weighted average method to adaptively adjust the loss weight of each target according to the convergence speed and learning difficulty of each target. The proposed dual-drive method is applied to predict and optimize the performance of vehicle acoustic package and to further improve the multiple sound quality metrics of tire/road noise. In the experimental validation, the proposed method outperforms the traditional prediction and optimization methods in effectiveness and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醉熏的黄豆完成签到 ,获得积分10
刚刚
ding应助dyc采纳,获得10
1秒前
2秒前
nuo_11完成签到,获得积分10
2秒前
2秒前
ttt发布了新的文献求助10
4秒前
萧寒发布了新的文献求助30
4秒前
xjs发布了新的文献求助10
4秒前
Xinxxx应助C5b6789n采纳,获得10
4秒前
5秒前
赘婿应助hxbhszus采纳,获得30
5秒前
6秒前
不一样的光完成签到,获得积分10
6秒前
TOF发布了新的文献求助10
6秒前
张怡完成签到,获得积分20
7秒前
vickie发布了新的文献求助10
8秒前
8秒前
9秒前
Xianao完成签到,获得积分10
9秒前
9秒前
9秒前
LLM发布了新的文献求助10
10秒前
10秒前
fengh峰发布了新的文献求助10
10秒前
11秒前
星辰大海应助翠花采纳,获得10
11秒前
11秒前
12秒前
Ma完成签到,获得积分10
12秒前
王花花发布了新的文献求助10
12秒前
13秒前
12123浪发布了新的文献求助30
13秒前
wang发布了新的文献求助10
14秒前
qwp发布了新的文献求助10
15秒前
默默发布了新的文献求助10
15秒前
17秒前
VV发布了新的文献求助30
18秒前
qian发布了新的文献求助10
18秒前
情怀应助Goooood采纳,获得10
18秒前
万能图书馆应助WWY采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297378
求助须知:如何正确求助?哪些是违规求助? 4446252
关于积分的说明 13838954
捐赠科研通 4331436
什么是DOI,文献DOI怎么找? 2377667
邀请新用户注册赠送积分活动 1372899
关于科研通互助平台的介绍 1338445