Multitarget prediction and optimization of pure electric vehicle tire/road airborne noise sound quality based on a knowledge- and data-driven method

噪音(视频) 计算机科学 音质 残余物 人工神经网络 交通噪声 电动汽车 汽车工程 人工智能 降噪 工程类 算法 语音识别 物理 图像(数学) 功率(物理) 量子力学
作者
Haibo Huang,Teik C. Lim,Jiuhui Wu,Weiping Ding,Jian Pang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:197: 110361-110361 被引量:32
标识
DOI:10.1016/j.ymssp.2023.110361
摘要

With the promotion of pure electric vehicles (PEVs), the overall interior noise level has been gradually reduced. Tire/road noise is increasingly becoming noticeable in PEVs and represents a primary concern for passengers. Vehicle acoustic packages are crucial for suppressing tire/road noise, and numerous studies have focused on improving the acoustic package performance and sound quality of tire/road noise. However, the prediction and optimization of tire/road acoustic comfort have two deficiencies: (1) The characteristics and transfer paths of tire/road noise are complex. Using knowledge-driven methods (such as simulation models) and data-driven methods (such as neural networks) for analysis has difficulty in accuracy parameter acquisition and unexplainable models. (2) The sound quality of tire/road noise is multidimensional. In the development of multitarget prediction models, when multiple targets contradict each other, prediction bias may result from wide differences among targets in the gradient value of the loss function in training. Therefore, in this paper, a knowledge- and data-driven method is proposed, which introduces the knowledge graph technique to develop a vehicle tire/road noise knowledge graph architecture and uses an improved residual network to drive reasoning in the domain knowledge graph. In addition, a multitarget prediction method based on the adaptive balanced learning mechanism for a residual network is proposed, which uses the dynamic weighted average method to adaptively adjust the loss weight of each target according to the convergence speed and learning difficulty of each target. The proposed dual-drive method is applied to predict and optimize the performance of vehicle acoustic package and to further improve the multiple sound quality metrics of tire/road noise. In the experimental validation, the proposed method outperforms the traditional prediction and optimization methods in effectiveness and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助150
刚刚
共渡完成签到,获得积分10
刚刚
Sam完成签到 ,获得积分20
刚刚
1秒前
魔道祖师完成签到,获得积分10
1秒前
独角喵发布了新的文献求助10
1秒前
2秒前
付尔一笑发布了新的文献求助10
2秒前
四夕发布了新的文献求助10
3秒前
观光发布了新的文献求助10
3秒前
Sara发布了新的文献求助10
3秒前
KerwinYang发布了新的文献求助10
3秒前
si完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
科研通AI6应助曹帅采纳,获得10
5秒前
Dr.Zou发布了新的文献求助10
6秒前
科研通AI6应助悲凉的新筠采纳,获得10
6秒前
烂漫书瑶完成签到 ,获得积分10
6秒前
Leo_完成签到,获得积分10
6秒前
wang完成签到,获得积分20
6秒前
6秒前
7秒前
7秒前
兮槿完成签到,获得积分10
7秒前
慕青应助席傲柏采纳,获得10
7秒前
情怀应助地方采纳,获得10
7秒前
7秒前
無端完成签到 ,获得积分10
8秒前
zhhr完成签到,获得积分10
8秒前
8秒前
8秒前
会飞的猪完成签到,获得积分10
8秒前
含糊的小松鼠完成签到,获得积分10
8秒前
cp1690发布了新的文献求助10
9秒前
酸菜余发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510498
求助须知:如何正确求助?哪些是违规求助? 4605134
关于积分的说明 14492967
捐赠科研通 4540342
什么是DOI,文献DOI怎么找? 2487940
邀请新用户注册赠送积分活动 1470152
关于科研通互助平台的介绍 1442632