Reconfigurable Artificial Synapse Based on Ambipolar Floating Gate Memory

神经形态工程学 材料科学 双极扩散 可重构性 光电子学 晶体管 兴奋性突触后电位 巨量平行 突触 计算机科学 纳米技术 人工神经网络 抑制性突触后电位 神经科学 电气工程 物理 电子 电压 人工智能 电信 工程类 生物 并行计算 量子力学
作者
Chengdong Yao,Guangcheng Wu,Mingqiang Huang,Wenqiang Wang,Cheng Zhang,Jiaxin Wu,Huawei Liu,Biyuan Zheng,Jiali Yi,Chenguang Zhu,Zilan Tang,Yizhe Wang,Ming Huang,Luying Huang,Ziwei Li,Xiang Li,Dong Li,Shengman Li,Anlian Pan
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (19): 23573-23582 被引量:37
标识
DOI:10.1021/acsami.3c00063
摘要

Artificial synapse networks capable of massively parallel computing and mimicking biological neural networks can potentially improve the processing efficiency of existing information technologies. Semiconductor devices functioning as excitatory and inhibitory synapses are crucial for developing intelligence systems, such as traffic control systems. However, achieving reconfigurability between two working modes (inhibitory and excitatory) and bilingual synaptic behavior in a single transistor remains challenging. This study successfully mimics a bilingual synaptic response using an artificial synapse based on an ambipolar floating gate memory comprising tungsten selenide (WSe2)/hexagonal boron nitride (h-BN)/ molybdenum telluride (MoTe2). In this WSe2/h-BN/MoTe2 structure, ambipolar semiconductors WSe2 and MoTe2 are inserted as channel and floating gates, respectively, and h-BN serves as the tunneling barrier layer. Using either positive or negative pulse amplitude modulations at the control gate, this device with bipolar channel conduction produced eight distinct resistance states. Based on this, we experimentally projected that we could achieve 490 memory states (210 hole-resistance states + 280 electron-resistance states). Using the bipolar charge transport and multistorage states of WSe2/h-BN/MoTe2 floating gate memory, we mimicked reconfigurable excitatory and inhibitory synaptic plasticity in a single device. Furthermore, the convolution neural network formed by these synaptic devices can recognize handwritten digits with an accuracy of >92%. This study identifies the unique properties of heterostructure devices based on two-dimensional materials as well as predicts their applicability in advanced recognition of neuromorphic computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YouY0123发布了新的文献求助50
1秒前
1秒前
MingQue完成签到,获得积分0
1秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
田様应助111采纳,获得10
4秒前
4秒前
搜集达人应助112我的采纳,获得10
4秒前
5秒前
汉堡包应助小乔采纳,获得10
5秒前
今后应助眯眯眼的安雁采纳,获得30
5秒前
Akim应助shinn采纳,获得10
6秒前
irene应助难见春采纳,获得10
7秒前
机灵柚子发布了新的文献求助10
7秒前
郝好东完成签到,获得积分20
7秒前
素人渔夫完成签到,获得积分10
7秒前
旺仔完成签到,获得积分10
7秒前
tian完成签到,获得积分10
8秒前
ChenLan发布了新的文献求助10
8秒前
贴贴完成签到,获得积分10
8秒前
9秒前
神奇的种子完成签到,获得积分10
9秒前
天天快乐应助矮小的向雪采纳,获得10
9秒前
贾学冲发布了新的文献求助10
9秒前
研友_VZG7GZ应助Yxian采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
李lailai发布了新的文献求助10
10秒前
11秒前
CipherSage应助司忆采纳,获得10
11秒前
Leeee发布了新的文献求助10
11秒前
思源应助沉静的代桃采纳,获得10
12秒前
华仔应助ChenLan采纳,获得10
12秒前
Yuling完成签到,获得积分10
13秒前
酷炫芷珊发布了新的文献求助80
15秒前
rachel03发布了新的文献求助10
15秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784847
求助须知:如何正确求助?哪些是违规求助? 5684004
关于积分的说明 15465575
捐赠科研通 4913804
什么是DOI,文献DOI怎么找? 2644941
邀请新用户注册赠送积分活动 1592845
关于科研通互助平台的介绍 1547234