Text mining approach for the prediction of disease status from discharge summaries using CCBE and NEROA-CNN

页眉 计算机科学 鉴定(生物学) 卷积神经网络 人工智能 嵌入 数据挖掘 聚类分析 信息抽取 机器学习 文字嵌入 计算机网络 植物 生物
作者
Pranita Mahajan,Dipti P. Rana
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:227: 120310-120310 被引量:1
标识
DOI:10.1016/j.eswa.2023.120310
摘要

A necessary document that encompasses clinical and administrative information indispensable for the continuity of care subsequent to the patients being discharged as of hospitals is called the hospital Discharge Summary (DS). Yet, it is complex to extract information automatically from DSs with natural language. Thus, a Text Mining (TM) approach has been proposed to predict the disease status utilizing DSs via Clustering centered Clinical Bert Embedding (CCBE) and Nudged Elastic Rider Optimization Algorithm with Convolutional Neural Network (NEROA-CNN). Initially, the input data is amassed from the publically available patient information dataset in the proposed model. Next, pre-processing of the patient information module occurs. After that, to extort the header details from the dataset, the header extraction is done. Subsequently, by utilizing Harris Hawks Gravitational Search Strategy Optimization Algorithm (H2GS2), the header selection is performed. Next, the collection of DS modules occurs, and it undergoes pre-processing. The subsequent step after pre-processing is the medical term identification. Then, utilizing the Patient ID attribute, the patient information module and DS module will be combined. After that, utilizing the CCBE method, word embedding is carried out. Lastly, by employing the NEROA-CNN, the classification is executed. Ultimately, the proposed technique's performance is examined regarding the performance metrics by analogizing it with the prevailing methodologies. The findings exhibit that the proposed model surpasses the other top-notch models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助123采纳,获得10
1秒前
2秒前
阿宝完成签到,获得积分10
3秒前
sdzylx7发布了新的文献求助10
3秒前
ainan发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
6秒前
懿懿发布了新的文献求助10
6秒前
8秒前
去燕麦完成签到 ,获得积分10
9秒前
DH完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
12秒前
Ava应助CMUSK采纳,获得20
13秒前
13秒前
14秒前
YunZeng完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
Lin完成签到,获得积分10
18秒前
脑洞疼应助SHY采纳,获得10
19秒前
韩子云完成签到,获得积分20
19秒前
bow完成签到 ,获得积分10
19秒前
21秒前
21秒前
微微发布了新的文献求助10
23秒前
织安完成签到,获得积分10
24秒前
24秒前
rui发布了新的文献求助10
24秒前
冬aa发布了新的文献求助10
24秒前
爆米花应助韩子云采纳,获得10
24秒前
24秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
Apricity发布了新的文献求助10
26秒前
勤劳的白晴完成签到,获得积分10
27秒前
MoMo发布了新的文献求助10
27秒前
懒洋洋完成签到 ,获得积分20
27秒前
默默向雪完成签到,获得积分0
28秒前
梁三柏应助白小黑采纳,获得10
28秒前
在水一方应助...采纳,获得10
28秒前
28秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749517
求助须知:如何正确求助?哪些是违规求助? 5459212
关于积分的说明 15363842
捐赠科研通 4888951
什么是DOI,文献DOI怎么找? 2628829
邀请新用户注册赠送积分活动 1577110
关于科研通互助平台的介绍 1533774