Text mining approach for the prediction of disease status from discharge summaries using CCBE and NEROA-CNN

页眉 计算机科学 鉴定(生物学) 卷积神经网络 人工智能 嵌入 数据挖掘 聚类分析 信息抽取 机器学习 文字嵌入 计算机网络 植物 生物
作者
Pranita Mahajan,Dipti P. Rana
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:227: 120310-120310 被引量:1
标识
DOI:10.1016/j.eswa.2023.120310
摘要

A necessary document that encompasses clinical and administrative information indispensable for the continuity of care subsequent to the patients being discharged as of hospitals is called the hospital Discharge Summary (DS). Yet, it is complex to extract information automatically from DSs with natural language. Thus, a Text Mining (TM) approach has been proposed to predict the disease status utilizing DSs via Clustering centered Clinical Bert Embedding (CCBE) and Nudged Elastic Rider Optimization Algorithm with Convolutional Neural Network (NEROA-CNN). Initially, the input data is amassed from the publically available patient information dataset in the proposed model. Next, pre-processing of the patient information module occurs. After that, to extort the header details from the dataset, the header extraction is done. Subsequently, by utilizing Harris Hawks Gravitational Search Strategy Optimization Algorithm (H2GS2), the header selection is performed. Next, the collection of DS modules occurs, and it undergoes pre-processing. The subsequent step after pre-processing is the medical term identification. Then, utilizing the Patient ID attribute, the patient information module and DS module will be combined. After that, utilizing the CCBE method, word embedding is carried out. Lastly, by employing the NEROA-CNN, the classification is executed. Ultimately, the proposed technique's performance is examined regarding the performance metrics by analogizing it with the prevailing methodologies. The findings exhibit that the proposed model surpasses the other top-notch models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SION完成签到,获得积分10
刚刚
LeungYM完成签到 ,获得积分10
1秒前
1秒前
lhy完成签到,获得积分10
2秒前
2秒前
2秒前
研途发布了新的文献求助10
2秒前
安宁完成签到 ,获得积分10
3秒前
QJYKKK完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
耶喽小黄发布了新的文献求助10
6秒前
GUOGUO完成签到 ,获得积分10
7秒前
李宗洋完成签到,获得积分10
7秒前
xueshu发布了新的文献求助30
8秒前
dove00发布了新的文献求助10
8秒前
烟花应助椰子味冰淇淋采纳,获得10
8秒前
传奇3应助靳韩羽采纳,获得10
9秒前
kk55完成签到,获得积分10
9秒前
11秒前
NN发布了新的文献求助30
11秒前
小乔应助michael采纳,获得10
11秒前
ZOE应助9699采纳,获得50
11秒前
jasmineee完成签到 ,获得积分10
12秒前
Twonej给丫丫的求助进行了留言
12秒前
rumor发布了新的文献求助10
12秒前
Jasper应助跳跃小伙采纳,获得100
13秒前
wanwuzhumu发布了新的文献求助10
13秒前
小劉同志关注了科研通微信公众号
13秒前
林夕完成签到 ,获得积分10
13秒前
柔弱的老三完成签到 ,获得积分10
13秒前
14秒前
CadoreK完成签到 ,获得积分10
14秒前
landy完成签到 ,获得积分10
15秒前
舒心幻竹完成签到 ,获得积分10
15秒前
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812