Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion

人工智能 功能磁共振成像 计算机科学 模式识别(心理学) 可识别性 参数统计 可靠性(半导体) 聚类分析 统计 数据挖掘 机器学习 心理学 数学 功率(物理) 物理 量子力学 神经科学
作者
Yuwei Wang,Xiao Chen,Chao‐Gan Yan
出处
期刊:NeuroImage [Elsevier BV]
卷期号:274: 120089-120089 被引量:22
标识
DOI:10.1016/j.neuroimage.2023.120089
摘要

To embrace big-data neuroimaging, harmonizing the site effect in resting-state functional magnetic resonance imaging (R-fMRI) data fusion is a fundamental challenge. A comprehensive evaluation of potentially effective harmonization strategies, particularly with specifically collected data, has been scarce, especially for R-fMRI metrics. Here, we comprehensively assess harmonization strategies from multiple perspectives, including tests on residual site effect, individual identification, test-retest reliability, and replicability of group-level statistical results, on widely used R-fMRI metrics across various datasets, including data obtained from participants with repetitive measures at different scanners. For individual identifiability (i.e., whether the same subject could be identified across R-fMRI data scanned across different sites), we found that, while most methods decreased site effects, the Subsampling Maximum-mean-distance based distribution shift correction Algorithm (SMA) and parametric unadjusted CovBat outperformed linear regression models, linear mixed models, ComBat series and invariant conditional variational auto-encoder in clustering accuracy. Test-retest reliability was better for SMA and parametric adjusted CovBat than unadjusted ComBat series and parametric unadjusted CovBat in the number of overlapped voxels. At the same time, SMA was superior to the latter in replicability in terms of the Dice coefficient and the scale of brain areas showing sex differences reproducibly observed across datasets. Furthermore, SMA better detected reproducible sex differences of ALFF under the site-sex confounded situation. Moreover, we designed experiments to identify the best target site features to optimize SMA identifiability, test-retest reliability, and stability. We noted both sample size and distribution of the target site matter and introduced a heuristic formula for selecting the target site. In addition to providing practical guidelines, this work can inform continuing improvements and innovations in harmonizing methodologies for big R-fMRI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fhbsdufh发布了新的文献求助10
刚刚
1秒前
1秒前
幸福立果完成签到 ,获得积分10
2秒前
研友_n0kYwL发布了新的文献求助10
2秒前
Cookies完成签到,获得积分10
2秒前
2秒前
史小霜发布了新的文献求助10
3秒前
秋刀鱼完成签到,获得积分10
5秒前
如初发布了新的文献求助20
5秒前
gnufgg完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
害怕的焱发布了新的文献求助10
7秒前
小二郎应助苗条的小肥羊采纳,获得10
8秒前
9秒前
CodeCraft应助研友_n0kYwL采纳,获得10
10秒前
10秒前
siki完成签到,获得积分10
10秒前
10秒前
七慕凉应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
乔乔应助科研通管家采纳,获得10
11秒前
丰富紫寒完成签到,获得积分20
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
七慕凉应助科研通管家采纳,获得40
11秒前
大个应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
12秒前
七慕凉应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745499
求助须知:如何正确求助?哪些是违规求助? 3288461
关于积分的说明 10058885
捐赠科研通 3004680
什么是DOI,文献DOI怎么找? 1649740
邀请新用户注册赠送积分活动 785530
科研通“疑难数据库(出版商)”最低求助积分说明 751136