MMMLP: Multi-modal Multilayer Perceptron for Sequential Recommendations

计算机科学 情态动词 人工智能 材料科学 高分子化学
作者
Jiahao Liang,Xiangyu Zhao,Muyang Li,Zijian Zhang,Wanyu Wang,Haochen Liu,Zitao Liu
标识
DOI:10.1145/3543507.3583378
摘要

Sequential recommendation aims to offer potentially interesting products to users by capturing their historical sequence of interacted items. Although it has facilitated extensive physical scenarios, sequential recommendation for multi-modal sequences has long been neglected. Multi-modal data that depicts a user's historical interactions exists ubiquitously, such as product pictures, textual descriptions, and interacted item sequences, providing semantic information from multiple perspectives that comprehensively describe a user's preferences. However, existing sequential recommendation methods either fail to directly handle multi-modality or suffer from high computational complexity. To address this, we propose a novel Multi-Modal Multi-Layer Perceptron (MMMLP) for maintaining multi-modal sequences for sequential recommendation. MMMLP is a purely MLP-based architecture that consists of three modules - the Feature Mixer Layer, Fusion Mixer Layer, and Prediction Layer - and has an edge on both efficacy and efficiency. Extensive experiments show that MMMLP achieves state-of-the-art performance with linear complexity. We also conduct ablating analysis to verify the contribution of each component. Furthermore, compatible experiments are devised, and the results show that the multi-modal representation learned by our proposed model generally benefits other recommendation models, emphasizing our model's ability to handle multi-modal information. We have made our code available online to ease reproducibility1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意发布了新的文献求助10
1秒前
gcc应助逃亡的小狗采纳,获得10
3秒前
3秒前
南方周末完成签到 ,获得积分10
5秒前
6秒前
巧克力素完成签到,获得积分10
6秒前
KevenDing完成签到,获得积分10
6秒前
yq发布了新的文献求助10
6秒前
简一发布了新的文献求助10
9秒前
一个发布了新的文献求助10
10秒前
10秒前
畅快的静芙完成签到,获得积分10
11秒前
智者完成签到,获得积分10
11秒前
愫浅完成签到 ,获得积分10
11秒前
深情安青应助SDS采纳,获得10
12秒前
啾啾啾完成签到,获得积分10
13秒前
13秒前
可爱的函函应助liang405采纳,获得10
13秒前
SciGPT应助LJ采纳,获得10
14秒前
15秒前
浦肯野应助Forest采纳,获得30
15秒前
渝州人应助longtengfei采纳,获得10
15秒前
皇家搓澡师完成签到,获得积分10
15秒前
莫鱼丸发布了新的文献求助20
16秒前
合适友儿发布了新的文献求助20
16秒前
思源应助xiongyue采纳,获得10
16秒前
16秒前
英俊的铭应助秋以南采纳,获得10
18秒前
18秒前
爱静静应助yq采纳,获得30
19秒前
香蕉觅云应助yq采纳,获得30
19秒前
动听汉堡发布了新的文献求助10
19秒前
Ava应助Wmhuahuaood采纳,获得10
19秒前
早睡早起发布了新的文献求助10
19秒前
仁者完成签到,获得积分10
22秒前
22秒前
经钧完成签到 ,获得积分10
24秒前
空空发布了新的文献求助10
25秒前
25秒前
安静采枫完成签到 ,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543968
求助须知:如何正确求助?哪些是违规求助? 3121180
关于积分的说明 9345951
捐赠科研通 2819266
什么是DOI,文献DOI怎么找? 1550071
邀请新用户注册赠送积分活动 722375
科研通“疑难数据库(出版商)”最低求助积分说明 713169