血液灌流
吸附
化学
壳聚糖
色谱法
部分凝血活酶时间
乳状液
核化学
介孔材料
有机化学
催化作用
血小板
医学
外科
免疫学
血液透析
作者
Xianda Liu,Tao Xu,Chunji Jiang,Yupei Li,Baihai Su,Weifeng Zhao,Changsheng Zhao
出处
期刊:Biomacromolecules
[American Chemical Society]
日期:2022-08-04
卷期号:23 (9): 3728-3742
被引量:26
标识
DOI:10.1021/acs.biomac.2c00583
摘要
Hemoperfusion is an important method to remove endotoxins and save the lives of patients with sepsis. However, the current adsorbents for hemoperfusion have disadvantages of insufficient endotoxin adsorption capacity, poor blood compatibility, and so on. Herein, we proposed a novel emulsion templating (ET) method to prepare ultraporous and double-network carboxylated chitosan (CCS)-poly(diallyl dimethylammonium chloride) (PDDA) hydrogel spheres (ET-CCSPD), bearing both negative and positive charges. CCS was introduced to balance the strong positive charges of PDDA to improve hemocompatibility, and emulsion templates endowed the adsorbent with an ultraporous structure for enhanced adsorption efficacy. The ET-CCSPDs neither damaged blood cells nor activated complement responses. In addition, the activated partial thromboplastin time (APTT) was prolonged to 8.5 times, which was beneficial for reducing the injection of anticoagulant in patients. The ET-CCSPDs had excellent scavenging performance against bacteria and endotoxin, with removal ratios of 96.7% for E. coli and 99.8% for S. aureus, respectively, and the static removal ratio of endotoxin in plasma was as high as 99.1% (C0 = 5.50 EU/mL, critical illness level). An adsorption cartridge filled with the ET-CCSPDs could remove 84.7% of endotoxin within 1 h (C0 = 100 EU/mL in PBS). Interestingly, the ET-CCSPDs had a good inhibitory effect on the cytokines produced by endotoxin-mediated septic blood. By developing the ET method to prepare ultraporous and double-network adsorbents, the problems of low adsorption efficiency and poor blood compatibility of traditional endotoxin adsorbents have been solved, thus opening a new route to fabricate absorbents for blood purification.
科研通智能强力驱动
Strongly Powered by AbleSci AI