A Cuproptosis Activation Scoring model predicts neoplasm-immunity interactions and personalized treatments in glioma

胶质瘤 免疫系统 肿瘤 癌症研究 免疫 医学 肿瘤科 免疫学 病理
作者
Bo Chen,Xiaoxi Zhou,Liting Yang,Hongshu Zhou,Ming Meng,Liyang Zhang,Jian Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:148: 105924-105924 被引量:58
标识
DOI:10.1016/j.compbiomed.2022.105924
摘要

Gliomas are malignant tumors in the central nervous system. Cuproptosis is a newly discovered cell death mechanism targeting lipoylated tricarboxylic acid cycle proteins. Previous studies have found that cuproptosis participates in tumor progression, but its role in gliomas is still elusive. Here, we systematically explored the bulk-tumor and single-cell transcriptome data to reveal its role in gliomas. The cuproptosis activity score (CuAS) was constructed based on cuproptosis-related genes, and machine learning techniques validated the score stability. High CuAS gliomas were more likely to have a poor prognosis and an aggressive mesenchymal (MES) subtype. Subsequently, the SCENIC algorithm predicted 20 CuAS-related transcription factors (TFs) in gliomas. Function enrichment and microenvironment analyses found that CuAS was associated with tumor immune infiltration. Accordingly, intercellular communications between neoplasm and immunity were explored by the R package "Cellchat". Five signaling pathways and 8 ligand-receptor pairs including ICAM1, ITGAX, ITGB2, ANXA1-FRR1, and the like, were identified to suggest how cuproptosis activity connected neoplastic and immune cells. Critically, 13 potential drugs targeting high CuAs gliomas were predicted according to the CTRP and PRISM databases, including oligomycin A, dihydroartemisinin, and others. Taken together, cuproptosis is involved in glioma aggressiveness, neoplasm-immune interactions, and may be used to assist in drug selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
细狗完成签到,获得积分20
1秒前
lcz发布了新的文献求助10
1秒前
1秒前
Xenia发布了新的文献求助10
2秒前
2秒前
3秒前
茉莉猫哟完成签到,获得积分10
3秒前
4秒前
Owen应助SSW.hani采纳,获得20
4秒前
4秒前
4秒前
闪闪魔镜完成签到,获得积分10
5秒前
maomao201026完成签到 ,获得积分10
5秒前
5秒前
科研小白完成签到,获得积分10
6秒前
阳佟念真完成签到,获得积分0
7秒前
7秒前
4000k完成签到,获得积分20
7秒前
qiqi7788发布了新的文献求助10
8秒前
8秒前
小茶发布了新的文献求助10
8秒前
美满沂完成签到 ,获得积分10
8秒前
9秒前
郑皓文发布了新的文献求助10
9秒前
苹果摇伽完成签到,获得积分10
10秒前
Lucas应助小马同学采纳,获得10
10秒前
10秒前
聪明的一德完成签到,获得积分10
11秒前
星辰大海应助Feeling采纳,获得10
11秒前
磊哥1233发布了新的文献求助10
11秒前
11秒前
11秒前
孟祥勤发布了新的文献求助10
12秒前
YiyueChan完成签到,获得积分10
12秒前
小青椒应助ChuangyangLi采纳,获得30
12秒前
13秒前
Xenia完成签到,获得积分10
13秒前
hmoo完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297261
求助须知:如何正确求助?哪些是违规求助? 4446159
关于积分的说明 13838669
捐赠科研通 4331314
什么是DOI,文献DOI怎么找? 2377555
邀请新用户注册赠送积分活动 1372811
关于科研通互助平台的介绍 1338355