Quantifying the social impacts of the London Night Tube with a double/debiased machine learning based difference-in-differences approach

撞车 服务(商务) 业务 营销 计算机科学 程序设计语言
作者
Yingheng Zhang,Haojie Li,Gang Ren
出处
期刊:Transportation Research Part A-policy and Practice [Elsevier]
卷期号:163: 288-303 被引量:31
标识
DOI:10.1016/j.tra.2022.07.015
摘要

There is a worldwide trend toward a growing number of people involved in various night-time activities. The night-time public transport service is of central importance for the urban night-time mobility. In London, the Night Tube service was launched in 2016 to meet the constantly growing night-time travel demand and support London's night-time economy. Yet limited empirical evidence on the ex-post impacts of the London Night Tube has been provided. In this study, we conduct a causal analysis on such impacts using a double/debiased machine learning based difference-in-differences approach. Specifically, we quantify the impacts of the Night Tube on London's night-time economy, house prices, road crashes and related casualties, and crimes. We further investigate the spatial variations in such impacts. Our results indicate a rise in house prices associated with the announcement and the implementation of the service. The number of night-time workplaces showed a limited response. Regarding the safety dimension, we find that the Night Tube service led to a small reduction in the frequency of road crashes but a substantial reduction in crash-related casualties. However, the crime rate in areas served by the Night Tube was increased, especially for the following two categories, robbery of personal property and violence against the person. Moreover, the impact on the crime rate is found to be larger in the inner London area. These findings provide practical implications for urban planners and policy makers, and reveal the need for monitoring the social impacts of the Night Tube service from a long-term perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老谢发布了新的文献求助10
刚刚
check003完成签到,获得积分10
刚刚
fortune完成签到,获得积分10
1秒前
彳亍完成签到,获得积分10
3秒前
4秒前
6秒前
Lin完成签到,获得积分10
7秒前
7秒前
斯文败类应助乐观鑫鹏采纳,获得10
9秒前
浮游应助LHP采纳,获得10
10秒前
Lulul发布了新的文献求助10
11秒前
bai完成签到,获得积分10
11秒前
十一玮发布了新的文献求助10
12秒前
xdmhv完成签到,获得积分10
16秒前
17秒前
Akim应助Tian采纳,获得10
19秒前
水水的完成签到 ,获得积分10
21秒前
球球尧伞耳完成签到,获得积分10
24秒前
John完成签到,获得积分10
25秒前
27秒前
酷波er应助纯真猕猴桃采纳,获得10
27秒前
28秒前
didi发布了新的文献求助10
28秒前
万能图书馆应助qianqina采纳,获得30
28秒前
暮烟应助Lulul采纳,获得10
28秒前
虚幻的冬瓜完成签到 ,获得积分10
31秒前
小翼发布了新的文献求助10
33秒前
35秒前
38秒前
glay发布了新的文献求助10
42秒前
想睡觉的小笼包完成签到 ,获得积分10
42秒前
称心映寒完成签到 ,获得积分10
44秒前
isak完成签到 ,获得积分10
44秒前
rachel03发布了新的文献求助20
47秒前
某某完成签到 ,获得积分10
47秒前
50秒前
53秒前
巩佳铭发布了新的文献求助10
54秒前
隐形曼青应助科研通管家采纳,获得10
54秒前
李爱国应助科研通管家采纳,获得10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645588
关于积分的说明 14675693
捐赠科研通 4586757
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460969