亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A framework of deep learning networks provides expert-level accuracy for the detection and prognostication of pulmonary arterial hypertension

医学 心脏病学 内科学 危险系数 肺动脉高压 法洛四联症 肺动脉 比例危险模型 置信区间 心脏病
作者
Gerhard‐Paul Diller,Maria Luisa Benesch Vidal,Aleksander Kempny,Kana Kubota,Wei Li,Konstantinos Dimopoulos,Alexandra Arvanitaki,Astrid E. Lammers,Stephen J. Wort,Helmut Baumgartner,Stefan Orwat,Michael Α. Gatzoulis
出处
期刊:European Journal of Echocardiography [Oxford University Press]
卷期号:23 (11): 1447-1456 被引量:21
标识
DOI:10.1093/ehjci/jeac147
摘要

To test the hypothesis that deep learning (DL) networks reliably detect pulmonary arterial hypertension (PAH) and provide prognostic information.Consecutive patients with PAH, right ventricular (RV) dilation (without PAH), and normal controls were included. An ensemble of deep convolutional networks incorporating echocardiographic views and estimated RV systolic pressure (RVSP) was trained to detect (invasively confirmed) PAH. In addition, DL-networks were trained to segment cardiac chambers and extracted geometric information throughout the cardiac cycle. The ability of DL parameters to predict all-cause mortality was assessed using Cox-proportional hazard analyses. Overall, 450 PAH patients, 308 patients with RV dilatation (201 with tetralogy of Fallot and 107 with atrial septal defects) and 67 normal controls were included. The DL algorithm achieved an accuracy and sensitivity of detecting PAH on a per patient basis of 97.6 and 100%, respectively. On univariable analysis, automatically determined right atrial area, RV area, RV fractional area change, RV inflow diameter and left ventricular eccentricity index (P < 0.001 for all) were significantly related to mortality. On multivariable analysis DL-based RV fractional area change (P < 0.001) and right atrial area (P = 0.003) emerged as independent predictors of outcome. Statistically, DL parameters were non-inferior to measures obtained manually by expert echocardiographers in predicting prognosis.The study highlights the utility of DL algorithms in detecting PAH on routine echocardiograms irrespective of RV dilatation. The algorithms outperform conventional echocardiographic evaluation and provide prognostic information at expert-level. Therefore, DL methods may allow for improved screening and optimized management of PAH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zsmj23完成签到 ,获得积分0
1秒前
13秒前
17秒前
who完成签到,获得积分10
20秒前
who发布了新的文献求助10
22秒前
1分钟前
量子星尘发布了新的文献求助20
1分钟前
2分钟前
QCB完成签到 ,获得积分10
2分钟前
2分钟前
Vino发布了新的文献求助10
2分钟前
Vino完成签到,获得积分10
2分钟前
3分钟前
Orange应助科研通管家采纳,获得10
3分钟前
Cherie77完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
穆振家完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
Axs完成签到,获得积分10
5分钟前
Kevin完成签到,获得积分10
5分钟前
5分钟前
羞涩的傲菡完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助50
5分钟前
6分钟前
6分钟前
闲逛的木头2完成签到,获得积分20
6分钟前
捉迷藏完成签到,获得积分0
6分钟前
馆长应助科研通管家采纳,获得10
7分钟前
迅速的岩完成签到,获得积分10
7分钟前
HYQ完成签到 ,获得积分10
8分钟前
8分钟前
嘻嘻完成签到,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
ding应助科研通管家采纳,获得10
9分钟前
徐凤年完成签到,获得积分10
9分钟前
沐雨微寒完成签到,获得积分10
9分钟前
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596127
求助须知:如何正确求助?哪些是违规求助? 4008212
关于积分的说明 12408971
捐赠科研通 3687127
什么是DOI,文献DOI怎么找? 2032233
邀请新用户注册赠送积分活动 1065470
科研通“疑难数据库(出版商)”最低求助积分说明 950783