A framework of deep learning networks provides expert-level accuracy for the detection and prognostication of pulmonary arterial hypertension

医学 心脏病学 内科学 危险系数 肺动脉高压 法洛四联症 肺动脉 比例危险模型 置信区间 心脏病
作者
Gerhard‐Paul Diller,Maria Luisa Benesch Vidal,Aleksander Kempny,Kana Kubota,Wei Li,Konstantinos Dimopoulos,Alexandra Arvanitaki,Astrid E. Lammers,Stephen J. Wort,Helmut Baumgartner,Stefan Orwat,Michael Α. Gatzoulis
出处
期刊:European Journal of Echocardiography [Oxford University Press]
卷期号:23 (11): 1447-1456 被引量:21
标识
DOI:10.1093/ehjci/jeac147
摘要

To test the hypothesis that deep learning (DL) networks reliably detect pulmonary arterial hypertension (PAH) and provide prognostic information.Consecutive patients with PAH, right ventricular (RV) dilation (without PAH), and normal controls were included. An ensemble of deep convolutional networks incorporating echocardiographic views and estimated RV systolic pressure (RVSP) was trained to detect (invasively confirmed) PAH. In addition, DL-networks were trained to segment cardiac chambers and extracted geometric information throughout the cardiac cycle. The ability of DL parameters to predict all-cause mortality was assessed using Cox-proportional hazard analyses. Overall, 450 PAH patients, 308 patients with RV dilatation (201 with tetralogy of Fallot and 107 with atrial septal defects) and 67 normal controls were included. The DL algorithm achieved an accuracy and sensitivity of detecting PAH on a per patient basis of 97.6 and 100%, respectively. On univariable analysis, automatically determined right atrial area, RV area, RV fractional area change, RV inflow diameter and left ventricular eccentricity index (P < 0.001 for all) were significantly related to mortality. On multivariable analysis DL-based RV fractional area change (P < 0.001) and right atrial area (P = 0.003) emerged as independent predictors of outcome. Statistically, DL parameters were non-inferior to measures obtained manually by expert echocardiographers in predicting prognosis.The study highlights the utility of DL algorithms in detecting PAH on routine echocardiograms irrespective of RV dilatation. The algorithms outperform conventional echocardiographic evaluation and provide prognostic information at expert-level. Therefore, DL methods may allow for improved screening and optimized management of PAH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
窝窝头完成签到 ,获得积分10
刚刚
星辰大海应助Brenda采纳,获得10
刚刚
梦凡完成签到,获得积分10
刚刚
nn完成签到,获得积分10
刚刚
1秒前
赵一完成签到,获得积分10
1秒前
江海客发布了新的文献求助10
1秒前
孤独的大灰狼完成签到 ,获得积分10
1秒前
上善若水完成签到,获得积分10
1秒前
1秒前
李静完成签到,获得积分20
2秒前
畅快的长颈鹿完成签到,获得积分10
2秒前
zyf完成签到,获得积分10
3秒前
盛夏完成签到,获得积分10
3秒前
龙眼完成签到,获得积分10
3秒前
研友_24789完成签到,获得积分10
3秒前
Lion完成签到,获得积分10
4秒前
L7.完成签到,获得积分10
4秒前
callmefather发布了新的文献求助10
4秒前
酷波er应助帆帆帆采纳,获得10
5秒前
zyf给zyf的求助进行了留言
5秒前
ccx完成签到,获得积分10
6秒前
Caroline完成签到,获得积分10
7秒前
zhangxiaoqing完成签到,获得积分10
7秒前
123完成签到,获得积分10
8秒前
笨笨静竹发布了新的文献求助10
8秒前
8秒前
SCI来关注了科研通微信公众号
9秒前
踏实松鼠完成签到 ,获得积分10
9秒前
Frank完成签到 ,获得积分10
9秒前
Lucas应助wanghb616采纳,获得10
11秒前
艾泽拉斯的囚徒完成签到,获得积分10
12秒前
12秒前
娜娜完成签到 ,获得积分10
12秒前
12秒前
不知道完成签到,获得积分0
12秒前
12秒前
活力的珊完成签到 ,获得积分10
12秒前
Jasin完成签到,获得积分10
12秒前
dfswf完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080494
捐赠科研通 4434084
什么是DOI,文献DOI怎么找? 2434382
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349