A framework of deep learning networks provides expert-level accuracy for the detection and prognostication of pulmonary arterial hypertension

医学 心脏病学 内科学 危险系数 肺动脉高压 法洛四联症 肺动脉 比例危险模型 置信区间 心脏病
作者
Gerhard‐Paul Diller,Maria Luisa Benesch Vidal,Aleksander Kempny,Kana Kubota,Wei Li,Konstantinos Dimopoulos,Alexandra Arvanitaki,Astrid E. Lammers,Stephen J. Wort,Helmut Baumgartner,Stefan Orwat,Michael Α. Gatzoulis
出处
期刊:European Journal of Echocardiography [Oxford University Press]
卷期号:23 (11): 1447-1456 被引量:21
标识
DOI:10.1093/ehjci/jeac147
摘要

To test the hypothesis that deep learning (DL) networks reliably detect pulmonary arterial hypertension (PAH) and provide prognostic information.Consecutive patients with PAH, right ventricular (RV) dilation (without PAH), and normal controls were included. An ensemble of deep convolutional networks incorporating echocardiographic views and estimated RV systolic pressure (RVSP) was trained to detect (invasively confirmed) PAH. In addition, DL-networks were trained to segment cardiac chambers and extracted geometric information throughout the cardiac cycle. The ability of DL parameters to predict all-cause mortality was assessed using Cox-proportional hazard analyses. Overall, 450 PAH patients, 308 patients with RV dilatation (201 with tetralogy of Fallot and 107 with atrial septal defects) and 67 normal controls were included. The DL algorithm achieved an accuracy and sensitivity of detecting PAH on a per patient basis of 97.6 and 100%, respectively. On univariable analysis, automatically determined right atrial area, RV area, RV fractional area change, RV inflow diameter and left ventricular eccentricity index (P < 0.001 for all) were significantly related to mortality. On multivariable analysis DL-based RV fractional area change (P < 0.001) and right atrial area (P = 0.003) emerged as independent predictors of outcome. Statistically, DL parameters were non-inferior to measures obtained manually by expert echocardiographers in predicting prognosis.The study highlights the utility of DL algorithms in detecting PAH on routine echocardiograms irrespective of RV dilatation. The algorithms outperform conventional echocardiographic evaluation and provide prognostic information at expert-level. Therefore, DL methods may allow for improved screening and optimized management of PAH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助Alone离殇采纳,获得10
刚刚
芬芬完成签到,获得积分10
1秒前
三七完成签到 ,获得积分10
1秒前
平淡依玉发布了新的文献求助10
1秒前
科目三应助yan123采纳,获得10
2秒前
桐桐应助星辰采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
淀粉发布了新的文献求助10
2秒前
Jared应助调皮的滑板采纳,获得10
3秒前
泽锦臻发布了新的文献求助10
3秒前
4秒前
煜清清发布了新的文献求助20
4秒前
威威发布了新的文献求助10
4秒前
6秒前
Criminology34应助收手吧大哥采纳,获得10
6秒前
6秒前
jz完成签到,获得积分10
6秒前
蛋蛋蛋丹完成签到 ,获得积分10
8秒前
8秒前
可乐完成签到,获得积分10
8秒前
kano发布了新的文献求助30
8秒前
小末发布了新的文献求助10
8秒前
科研小白发布了新的文献求助10
9秒前
潺潺流水完成签到,获得积分10
10秒前
阿海的发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
liu11发布了新的文献求助10
11秒前
11秒前
叶访云发布了新的文献求助10
12秒前
欣慰元蝶应助leslie采纳,获得10
12秒前
12秒前
支原体感染力完成签到,获得积分10
13秒前
无花果应助嘉嘉嘉嘉嘉采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
星辰大海应助龙山采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594