A framework of deep learning networks provides expert-level accuracy for the detection and prognostication of pulmonary arterial hypertension

医学 心脏病学 内科学 危险系数 肺动脉高压 法洛四联症 肺动脉 比例危险模型 置信区间 心脏病
作者
Gerhard‐Paul Diller,Maria Luisa Benesch Vidal,Aleksander Kempny,Kana Kubota,Wei Li,Konstantinos Dimopoulos,Alexandra Arvanitaki,Astrid E. Lammers,Stephen J. Wort,Helmut Baumgartner,Stefan Orwat,Michael Α. Gatzoulis
出处
期刊:European Journal of Echocardiography [Oxford University Press]
卷期号:23 (11): 1447-1456 被引量:21
标识
DOI:10.1093/ehjci/jeac147
摘要

To test the hypothesis that deep learning (DL) networks reliably detect pulmonary arterial hypertension (PAH) and provide prognostic information.Consecutive patients with PAH, right ventricular (RV) dilation (without PAH), and normal controls were included. An ensemble of deep convolutional networks incorporating echocardiographic views and estimated RV systolic pressure (RVSP) was trained to detect (invasively confirmed) PAH. In addition, DL-networks were trained to segment cardiac chambers and extracted geometric information throughout the cardiac cycle. The ability of DL parameters to predict all-cause mortality was assessed using Cox-proportional hazard analyses. Overall, 450 PAH patients, 308 patients with RV dilatation (201 with tetralogy of Fallot and 107 with atrial septal defects) and 67 normal controls were included. The DL algorithm achieved an accuracy and sensitivity of detecting PAH on a per patient basis of 97.6 and 100%, respectively. On univariable analysis, automatically determined right atrial area, RV area, RV fractional area change, RV inflow diameter and left ventricular eccentricity index (P < 0.001 for all) were significantly related to mortality. On multivariable analysis DL-based RV fractional area change (P < 0.001) and right atrial area (P = 0.003) emerged as independent predictors of outcome. Statistically, DL parameters were non-inferior to measures obtained manually by expert echocardiographers in predicting prognosis.The study highlights the utility of DL algorithms in detecting PAH on routine echocardiograms irrespective of RV dilatation. The algorithms outperform conventional echocardiographic evaluation and provide prognostic information at expert-level. Therefore, DL methods may allow for improved screening and optimized management of PAH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
99发布了新的文献求助10
1秒前
梁jj完成签到,获得积分10
1秒前
852应助小短腿飞行员采纳,获得10
2秒前
彭于晏应助漾漾采纳,获得10
3秒前
Nancy发布了新的文献求助10
3秒前
3秒前
jianyulv应助司空博涛采纳,获得10
3秒前
魏lin发布了新的文献求助10
4秒前
掠影发布了新的文献求助10
4秒前
4秒前
星辰大海应助liushu采纳,获得10
4秒前
Stella应助zjmm采纳,获得10
4秒前
4秒前
汉堡包应助婧婧婧采纳,获得10
5秒前
5秒前
彭于晏应助59采纳,获得10
5秒前
buno发布了新的文献求助30
5秒前
搜集达人应助专注的芷蕾采纳,获得10
6秒前
6秒前
Stella应助阔达的双双采纳,获得10
6秒前
6秒前
6秒前
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
一叶知秋应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得20
7秒前
核桃应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
贝贝应助科研通管家采纳,获得150
7秒前
雯雯发布了新的文献求助10
7秒前
所所应助科研通管家采纳,获得10
7秒前
Wendy发布了新的文献求助10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588167
求助须知:如何正确求助?哪些是违规求助? 4671269
关于积分的说明 14786547
捐赠科研通 4624667
什么是DOI,文献DOI怎么找? 2531667
邀请新用户注册赠送积分活动 1500268
关于科研通互助平台的介绍 1468240