Causal Attention for Interpretable and Generalizable Graph Classification

虚假关系 分类器(UML) 联营 人工智能 计算机科学 机器学习 因果模型 因果结构 图形 一般化 理论计算机科学 数学 统计 数学分析 物理 量子力学
作者
Yongduo Sui,Xiang Wang,Jiancan Wu,Min Lin,Xiangnan He,Tat-Seng Chua
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.1145/3534678.3539366
摘要

In graph classification, attention and pooling-based graph neural networks (GNNs) prevail to extract the critical features from the input graph and support the prediction. They mostly follow the paradigm of learning to attend, which maximizes the mutual information between the attended graph and the ground-truth label. However, this paradigm makes GNN classifiers recklessly absorb all the statistical correlations between input features and labels in the training data, without distinguishing the causal and noncausal effects of features. Instead of underscoring the causal features, the attended graphs are prone to visit the noncausal features as the shortcut to predictions. Such shortcut features might easily change outside the training distribution, thereby making the GNN classifiers suffer from poor generalization. In this work, we take a causal look at the GNN modeling for graph classification. With our causal assumption, the shortcut feature serves as a confounder between the causal feature and prediction. It tricks the classifier to learn spurious correlations that facilitate the prediction in in-distribution (ID) test evaluation, while causing the performance drop in out-of-distribution (OOD) test data. To endow the classifier with better interpretation and generalization, we propose the Causal Attention Learning (CAL) strategy, which discovers the causal patterns and mitigates the confounding effect of shortcuts. Specifically, we employ attention modules to estimate the causal and shortcut features of the input graph. We then parameterize the backdoor adjustment of causal theory -- combine each causal feature with various shortcut features. It encourages the stable relationships between the causal estimation and prediction, regardless of the changes in shortcut parts and distributions. Extensive experiments on synthetic and real-world datasets demonstrate the effectiveness of CAL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助Vintor采纳,获得10
2秒前
奋斗的凡完成签到 ,获得积分10
2秒前
小麻薯完成签到,获得积分20
2秒前
搜集达人应助程星宇采纳,获得10
3秒前
小扇完成签到,获得积分10
4秒前
和风完成签到 ,获得积分10
4秒前
0511发布了新的文献求助10
6秒前
8秒前
烟花应助123采纳,获得10
8秒前
10秒前
Desperado完成签到,获得积分20
11秒前
12秒前
Vintor发布了新的文献求助10
13秒前
MindAway完成签到,获得积分10
14秒前
Jane完成签到,获得积分10
14秒前
imcwj完成签到 ,获得积分10
14秒前
14秒前
无花果应助xiangyiyi采纳,获得10
15秒前
赘婿应助马上毕业采纳,获得10
16秒前
17秒前
18秒前
汉堡包应助fxy采纳,获得10
22秒前
22秒前
Owen应助启航采纳,获得10
23秒前
俭朴青烟完成签到,获得积分20
24秒前
27秒前
emmm发布了新的文献求助10
28秒前
lzs完成签到,获得积分10
28秒前
0511完成签到,获得积分10
28秒前
29秒前
30秒前
30秒前
30秒前
周杰完成签到,获得积分10
31秒前
32秒前
fxy发布了新的文献求助10
34秒前
启航发布了新的文献求助10
34秒前
ddddd发布了新的文献求助10
34秒前
勤奋的凌翠完成签到 ,获得积分10
35秒前
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958087
求助须知:如何正确求助?哪些是违规求助? 3504271
关于积分的说明 11117667
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788396
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802541