Multi-lesion radiomics of PET/CT for non-invasive survival stratification and histologic tumor risk profiling in patients with lung adenocarcinoma

医学 危险系数 神经组阅片室 正电子发射断层摄影术 放射科 置信区间 接收机工作特性 无线电技术 腺癌 介入放射学 核医学 分级(工程) PET-CT 内科学 癌症 土木工程 神经学 精神科 工程类
作者
Meixin Zhao,Kilian Kluge,László Papp,Marko Grahovac,Shaomin Yang,Chunting Jiang,Denis Krajnc,Clemens P. Spielvogel,Boglarka Ecsedi,Alexander Haug,Shiwei Wang,Marcus Hacker,Weifang Zhang,Xiang Li
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (10): 7056-7067 被引量:13
标识
DOI:10.1007/s00330-022-08999-7
摘要

ObjectivesThis study investigates the ability of machine learning (ML) models trained on clinical data and 2-deoxy-2-[18F]fluoro-D-glucose(FDG) positron emission tomography/computed tomography (PET/CT) radiomics to predict overall survival (OS), tumor grade (TG), and histologic growth pattern risk (GPR) in lung adenocarcinoma (LUAD) patients.Methods:A total of 421 treatment-naive patients with histologically-proven LUAD and available FDG PET/CT imaging were retrospectively included. Four cohorts were assessed for predicting 4-year OS (n = 276), 3-year OS (n = 280), TG (n = 298), and GPR (n = 265). FDG-avid lesions were delineated, and 2082 radiomics features were extracted and combined with endpoint-specific clinical parameters. ML models were built for the prediction of 4-year OS (M4OS), 3-year OS (M3OS), tumor grading (MTG), and histologic growth pattern risk (MGPR). A 100-fold Monte Carlo cross-validation with 80:20 training to validation split was employed as a performance evaluation for all models. The association between the M4OS and M3OS predictions with OS was assessed by the Kaplan-Meier survival analysis.ResultsThe area under the receiver operator characteristics curve (AUC) was the highest for M4OS (AUC 0.88, 95% confidence interval (CI) 86.7–88.7), followed by M3OS (AUC 0.84, CI 82.9–84.9), while MTG and MGPR performed equally well (AUC 0.76, CI 74.4–77.9, CI 74.6–78, respectively). Predictions of M4OS (hazard ratio (HR) −2.4, CI −2.47 to −1.64, p < 0.05) and M3OS (HR −2.36, CI −2.79 to −1.93, p < 0.05) were independently associated with OS.ConclusionML models are able to predict long-term survival outcomes in LUAD patients with high accuracy. Furthermore, histologic grade and predominant growth pattern risk can be predicted with satisfactory accuracy.Key Points • Machine learning models trained on pre-therapeutic PET/CT radiomics enable highly accurate long-term survival prediction of patients with lung adenocarcinoma. • Highly accurate survival predictions are achieved in lung adenocarcinoma patients despite heterogenous histologies and treatment regimens. • Radiomic machine learning models are able to predict lung adenocarcinoma tumor grade and histologic growth pattern risk with satisfactory accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助不安毛豆采纳,获得10
6秒前
11秒前
Joy完成签到 ,获得积分10
12秒前
congcong完成签到 ,获得积分10
15秒前
Freya发布了新的文献求助10
17秒前
YuLu完成签到 ,获得积分10
24秒前
小白白白完成签到 ,获得积分10
32秒前
阔达一刀完成签到 ,获得积分10
34秒前
ccm应助Freya采纳,获得10
37秒前
651完成签到 ,获得积分10
46秒前
时尚的梦曼完成签到,获得积分10
49秒前
怡心亭完成签到 ,获得积分10
52秒前
52秒前
彩色的冷梅完成签到 ,获得积分10
54秒前
Vincent发布了新的文献求助10
58秒前
开心夏旋完成签到 ,获得积分10
1分钟前
YYA完成签到 ,获得积分10
1分钟前
nysyty完成签到 ,获得积分10
1分钟前
Tonald Yang完成签到,获得积分20
1分钟前
chenll1988完成签到 ,获得积分10
1分钟前
光亮若翠完成签到,获得积分10
1分钟前
刚子完成签到 ,获得积分0
1分钟前
哈哈完成签到 ,获得积分10
1分钟前
滕皓轩完成签到 ,获得积分10
1分钟前
ussiMi完成签到 ,获得积分10
1分钟前
Air完成签到 ,获得积分10
1分钟前
Jason完成签到,获得积分10
1分钟前
zzhui完成签到,获得积分10
1分钟前
l老王完成签到 ,获得积分10
1分钟前
贰鸟应助科研通管家采纳,获得20
1分钟前
打打应助科研通管家采纳,获得30
1分钟前
Myx完成签到,获得积分10
2分钟前
崩溃完成签到,获得积分10
2分钟前
zijingsy完成签到 ,获得积分10
2分钟前
Doraemon完成签到 ,获得积分10
2分钟前
范白容完成签到 ,获得积分10
2分钟前
诚心代芙完成签到 ,获得积分10
2分钟前
111完成签到 ,获得积分10
2分钟前
3分钟前
dreamwalk完成签到 ,获得积分10
3分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139630
求助须知:如何正确求助?哪些是违规求助? 2790514
关于积分的说明 7795460
捐赠科研通 2446980
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176