亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-lesion radiomics of PET/CT for non-invasive survival stratification and histologic tumor risk profiling in patients with lung adenocarcinoma

医学 危险系数 神经组阅片室 正电子发射断层摄影术 放射科 置信区间 接收机工作特性 无线电技术 腺癌 介入放射学 核医学 分级(工程) PET-CT 内科学 癌症 工程类 土木工程 精神科 神经学
作者
Meixin Zhao,Kilian Kluge,László Papp,Marko Grahovac,Shaomin Yang,Chunting Jiang,Denis Krajnc,Clemens P. Spielvogel,Boglarka Ecsedi,Alexander Haug,Shiwei Wang,Marcus Hacker,Weifang Zhang,Xiang Li
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (10): 7056-7067 被引量:17
标识
DOI:10.1007/s00330-022-08999-7
摘要

ObjectivesThis study investigates the ability of machine learning (ML) models trained on clinical data and 2-deoxy-2-[18F]fluoro-D-glucose(FDG) positron emission tomography/computed tomography (PET/CT) radiomics to predict overall survival (OS), tumor grade (TG), and histologic growth pattern risk (GPR) in lung adenocarcinoma (LUAD) patients.Methods:A total of 421 treatment-naive patients with histologically-proven LUAD and available FDG PET/CT imaging were retrospectively included. Four cohorts were assessed for predicting 4-year OS (n = 276), 3-year OS (n = 280), TG (n = 298), and GPR (n = 265). FDG-avid lesions were delineated, and 2082 radiomics features were extracted and combined with endpoint-specific clinical parameters. ML models were built for the prediction of 4-year OS (M4OS), 3-year OS (M3OS), tumor grading (MTG), and histologic growth pattern risk (MGPR). A 100-fold Monte Carlo cross-validation with 80:20 training to validation split was employed as a performance evaluation for all models. The association between the M4OS and M3OS predictions with OS was assessed by the Kaplan-Meier survival analysis.ResultsThe area under the receiver operator characteristics curve (AUC) was the highest for M4OS (AUC 0.88, 95% confidence interval (CI) 86.7–88.7), followed by M3OS (AUC 0.84, CI 82.9–84.9), while MTG and MGPR performed equally well (AUC 0.76, CI 74.4–77.9, CI 74.6–78, respectively). Predictions of M4OS (hazard ratio (HR) −2.4, CI −2.47 to −1.64, p < 0.05) and M3OS (HR −2.36, CI −2.79 to −1.93, p < 0.05) were independently associated with OS.ConclusionML models are able to predict long-term survival outcomes in LUAD patients with high accuracy. Furthermore, histologic grade and predominant growth pattern risk can be predicted with satisfactory accuracy.Key Points • Machine learning models trained on pre-therapeutic PET/CT radiomics enable highly accurate long-term survival prediction of patients with lung adenocarcinoma. • Highly accurate survival predictions are achieved in lung adenocarcinoma patients despite heterogenous histologies and treatment regimens. • Radiomic machine learning models are able to predict lung adenocarcinoma tumor grade and histologic growth pattern risk with satisfactory accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxxx发布了新的文献求助10
刚刚
superbada发布了新的文献求助10
4秒前
ding应助豆芽采纳,获得10
17秒前
美美完成签到 ,获得积分10
20秒前
ysjwj关注了科研通微信公众号
24秒前
26秒前
27秒前
28秒前
啊哈发布了新的文献求助10
32秒前
豆芽发布了新的文献求助10
32秒前
zhongbo完成签到,获得积分10
34秒前
taotao发布了新的文献求助10
35秒前
至真至简完成签到,获得积分10
41秒前
simon完成签到 ,获得积分10
49秒前
果称完成签到,获得积分10
54秒前
在水一方完成签到 ,获得积分0
1分钟前
章鱼完成签到,获得积分10
1分钟前
sss完成签到,获得积分10
1分钟前
机智书本发布了新的文献求助10
1分钟前
tuanheqi应助S1mon采纳,获得50
1分钟前
Rinsana完成签到,获得积分10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
1分钟前
余慵慵完成签到 ,获得积分10
1分钟前
1分钟前
Alien发布了新的文献求助10
1分钟前
顺利的愫发布了新的文献求助10
1分钟前
Markov发布了新的文献求助10
2分钟前
Chroninus完成签到,获得积分10
2分钟前
acat完成签到 ,获得积分10
2分钟前
DAI完成签到,获得积分10
2分钟前
范ER完成签到 ,获得积分10
2分钟前
生动的醉薇完成签到,获得积分10
2分钟前
SciGPT应助pp采纳,获得10
2分钟前
涵涵涵hh完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI6.2应助顺利的愫采纳,获得10
2分钟前
2分钟前
Flexy发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880422
求助须知:如何正确求助?哪些是违规求助? 6572042
关于积分的说明 15689835
捐赠科研通 5000084
什么是DOI,文献DOI怎么找? 2694202
邀请新用户注册赠送积分活动 1636000
关于科研通互助平台的介绍 1593442