Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning

自举(财务) 机器学习 计算机科学 选择(遗传算法) 交叉验证 人工智能 差异(会计) 选型 算法 数据挖掘 数学 计量经济学 会计 业务
作者
Sebastian Raschka
出处
期刊:Cornell University - arXiv 被引量:495
标识
DOI:10.48550/arxiv.1811.12808
摘要

The correct use of model evaluation, model selection, and algorithm selection techniques is vital in academic machine learning research as well as in many industrial settings. This article reviews different techniques that can be used for each of these three subtasks and discusses the main advantages and disadvantages of each technique with references to theoretical and empirical studies. Further, recommendations are given to encourage best yet feasible practices in research and applications of machine learning. Common methods such as the holdout method for model evaluation and selection are covered, which are not recommended when working with small datasets. Different flavors of the bootstrap technique are introduced for estimating the uncertainty of performance estimates, as an alternative to confidence intervals via normal approximation if bootstrapping is computationally feasible. Common cross-validation techniques such as leave-one-out cross-validation and k-fold cross-validation are reviewed, the bias-variance trade-off for choosing k is discussed, and practical tips for the optimal choice of k are given based on empirical evidence. Different statistical tests for algorithm comparisons are presented, and strategies for dealing with multiple comparisons such as omnibus tests and multiple-comparison corrections are discussed. Finally, alternative methods for algorithm selection, such as the combined F-test 5x2 cross-validation and nested cross-validation, are recommended for comparing machine learning algorithms when datasets are small.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助12采纳,获得10
1秒前
1秒前
abcd发布了新的文献求助10
1秒前
董宏杨关注了科研通微信公众号
2秒前
3秒前
瘦瘦白昼发布了新的文献求助10
3秒前
MoodMeed完成签到,获得积分10
3秒前
TL完成签到,获得积分10
4秒前
4秒前
4秒前
无私的芹应助龚正龙采纳,获得10
5秒前
花样发布了新的文献求助10
5秒前
田様应助研友_Z33zkZ采纳,获得50
5秒前
5秒前
甜晞完成签到,获得积分10
5秒前
科研通AI2S应助xiaohe采纳,获得10
6秒前
7秒前
追逐123完成签到 ,获得积分10
9秒前
9秒前
哒哒张发布了新的文献求助30
9秒前
DC发布了新的文献求助10
11秒前
打打应助fangliu采纳,获得10
11秒前
holl完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
翟如风完成签到,获得积分10
12秒前
12秒前
黑木完成签到 ,获得积分10
12秒前
星辰大海应助奥暖将采纳,获得10
12秒前
大个应助infun采纳,获得10
14秒前
小巧的忘幽完成签到,获得积分20
14秒前
Whaoe发布了新的文献求助10
15秒前
15秒前
隐形曼青应助玩命的糖豆采纳,获得10
16秒前
Kirito应助Yuanyuan采纳,获得10
17秒前
17秒前
17秒前
WGOIST完成签到,获得积分10
17秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497551
关于积分的说明 11088037
捐赠科研通 3228178
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801230