Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning

自举(财务) 机器学习 计算机科学 选择(遗传算法) 交叉验证 人工智能 差异(会计) 选型 算法 数据挖掘 数学 计量经济学 会计 业务
作者
Sebastian Raschka
出处
期刊:Cornell University - arXiv 被引量:514
标识
DOI:10.48550/arxiv.1811.12808
摘要

The correct use of model evaluation, model selection, and algorithm selection techniques is vital in academic machine learning research as well as in many industrial settings. This article reviews different techniques that can be used for each of these three subtasks and discusses the main advantages and disadvantages of each technique with references to theoretical and empirical studies. Further, recommendations are given to encourage best yet feasible practices in research and applications of machine learning. Common methods such as the holdout method for model evaluation and selection are covered, which are not recommended when working with small datasets. Different flavors of the bootstrap technique are introduced for estimating the uncertainty of performance estimates, as an alternative to confidence intervals via normal approximation if bootstrapping is computationally feasible. Common cross-validation techniques such as leave-one-out cross-validation and k-fold cross-validation are reviewed, the bias-variance trade-off for choosing k is discussed, and practical tips for the optimal choice of k are given based on empirical evidence. Different statistical tests for algorithm comparisons are presented, and strategies for dealing with multiple comparisons such as omnibus tests and multiple-comparison corrections are discussed. Finally, alternative methods for algorithm selection, such as the combined F-test 5x2 cross-validation and nested cross-validation, are recommended for comparing machine learning algorithms when datasets are small.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yees完成签到,获得积分20
1秒前
太Crazy辣给太Crazy辣的求助进行了留言
1秒前
manto发布了新的文献求助10
1秒前
木子完成签到,获得积分10
1秒前
1秒前
荼蘼如雪完成签到,获得积分10
2秒前
bin完成签到,获得积分10
2秒前
Bio应助22采纳,获得30
2秒前
2秒前
研友_VZG7GZ应助dayuernihao采纳,获得10
3秒前
lxc发布了新的文献求助10
3秒前
Yancy发布了新的文献求助10
4秒前
5秒前
科研通AI6应助yees采纳,获得10
5秒前
无花果应助keeee采纳,获得10
6秒前
7秒前
NexusExplorer应助lydia采纳,获得10
7秒前
Shirley完成签到,获得积分10
8秒前
东方城发布了新的文献求助10
8秒前
8秒前
Leif发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助50
10秒前
10秒前
pfshan发布了新的文献求助10
11秒前
桃井尤川完成签到,获得积分10
11秒前
浮游应助Gavin啥也不会采纳,获得10
11秒前
派大星的海洋裤完成签到,获得积分10
11秒前
Yancy完成签到,获得积分20
12秒前
Limity完成签到,获得积分10
12秒前
12秒前
Panjiao完成签到 ,获得积分10
12秒前
12秒前
风清扬发布了新的文献求助10
13秒前
lanchong发布了新的文献求助10
13秒前
13秒前
lxc关闭了lxc文献求助
15秒前
15秒前
16秒前
xiaosenlinhai发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109426
求助须知:如何正确求助?哪些是违规求助? 4318139
关于积分的说明 13453709
捐赠科研通 4148066
什么是DOI,文献DOI怎么找? 2273021
邀请新用户注册赠送积分活动 1275171
关于科研通互助平台的介绍 1213331