Deep segmentation and classification of complex crops using multi-feature satellite imagery

卫星图像 人工智能 分割 特征(语言学) 遥感 航空影像 模式识别(心理学) 卫星 计算机科学 深度学习 计算机视觉 地质学 工程类 语言学 哲学 航空航天工程
作者
Lijun Wang,Jiayao Wang,Xiwang Zhang,Laigang Wang,Fen Qin
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:200: 107249-107249 被引量:16
标识
DOI:10.1016/j.compag.2022.107249
摘要

• An end-to-end transferable-learning approach is proposed in this study. • The class-imbalanced problem of traditional methods could be improved. • The improved UNet++ model outperforms other models in late crop growth periods. • The model with multi-feature can provide better spatiotemporal transferability. • The new model is suitable for regions with small differences in crop categories. Accurate remote sensing-based land use and crop maps provide important and timely information for decision support in large-scale agricultural monitoring. Most existing multi-crop products for complex agricultural areas based on traditional machine learning algorithms are not suitable for large agricultural management because of the poor model transfer capabilities. Therefore, a deep segmentation and classification model including spatiotemporal transfer across regions and years must be developed. In this study, a deep learning approach was developed based on the UNet++ architecture by integrating feature fusion and upsampling of small samples for large-scale land use and crop mapping. Classification experiments were conducted for ten categories at four sites using 10 m resolution Sentinel-2A images from 2019 to 2021 containing 4,194,304 pixels. The joint loss, including the label smoothing cross entropy and Dice coefficient, and the mean intersection over union (mIoU) were used to evaluate the model performance depending on different features and upsampling schemes. The joint loss and mIoU values of the training model and the prediction accuracies of the test sites indicate that the scheme including the upsampling and fusion of spectral bands, vegetation indices, and texture features yields the optimal model performance. For comparison, UNet, DeepLab V3+, Pyramid Scene Parsing Network (PSPNet), and random forest models were built. The improved UNet++ model exhibits the best performance, with an overall accuracy, kappa, and macro F 1 above 91 %, 85 %, and 51 %, respectively. The deep segmentation and classification results without training samples demonstrate the spatiotemporal transfer capability of the UNet++ architecture during the key crop growth period. The patch parameter values also indicate that the improved model exhibits a better shape compactness and significantly reduces and suppresses patch fragmentation. Based on the analysis of the overall confusion matrix, the proposed method improves the classification accuracy for datasets with imbalanced land cover and crop types. This study provides a strategy for large-scale and complex land use and crop mapping based on the integration of feature fusion and deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
arizaki7发布了新的文献求助10
1秒前
1秒前
UP完成签到,获得积分10
2秒前
善学以致用应助罗大壮采纳,获得10
2秒前
占曼荷发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
7秒前
糊涂涂发布了新的文献求助10
7秒前
7秒前
ding应助xqxqxqxqxqx采纳,获得10
8秒前
8秒前
子车茗应助爱笑的小刺猬采纳,获得30
10秒前
11秒前
小洋完成签到,获得积分20
11秒前
11秒前
arizaki7发布了新的文献求助10
12秒前
粘豆包完成签到,获得积分10
13秒前
Cryer2401完成签到,获得积分10
13秒前
罗大壮发布了新的文献求助10
13秒前
14秒前
木木完成签到,获得积分10
15秒前
占曼荷完成签到,获得积分10
16秒前
17秒前
幸福果汁发布了新的文献求助10
17秒前
北城发布了新的文献求助10
17秒前
一炁完成签到,获得积分10
17秒前
18秒前
songjinyan829发布了新的文献求助10
18秒前
风中小懒虫完成签到,获得积分10
19秒前
粉红豹完成签到,获得积分10
20秒前
20秒前
糊涂的缘分完成签到,获得积分10
20秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
23秒前
24秒前
罗明琴完成签到 ,获得积分10
24秒前
25秒前
北城完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087467
求助须知:如何正确求助?哪些是违规求助? 4302837
关于积分的说明 13408929
捐赠科研通 4128209
什么是DOI,文献DOI怎么找? 2260744
邀请新用户注册赠送积分活动 1264924
关于科研通互助平台的介绍 1199253