Deep segmentation and classification of complex crops using multi-feature satellite imagery

卫星图像 人工智能 分割 特征(语言学) 遥感 航空影像 模式识别(心理学) 卫星 计算机科学 深度学习 计算机视觉 地质学 工程类 语言学 哲学 航空航天工程
作者
Lijun Wang,Jiayao Wang,Xiwang Zhang,Laigang Wang,Fen Qin
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:200: 107249-107249 被引量:16
标识
DOI:10.1016/j.compag.2022.107249
摘要

• An end-to-end transferable-learning approach is proposed in this study. • The class-imbalanced problem of traditional methods could be improved. • The improved UNet++ model outperforms other models in late crop growth periods. • The model with multi-feature can provide better spatiotemporal transferability. • The new model is suitable for regions with small differences in crop categories. Accurate remote sensing-based land use and crop maps provide important and timely information for decision support in large-scale agricultural monitoring. Most existing multi-crop products for complex agricultural areas based on traditional machine learning algorithms are not suitable for large agricultural management because of the poor model transfer capabilities. Therefore, a deep segmentation and classification model including spatiotemporal transfer across regions and years must be developed. In this study, a deep learning approach was developed based on the UNet++ architecture by integrating feature fusion and upsampling of small samples for large-scale land use and crop mapping. Classification experiments were conducted for ten categories at four sites using 10 m resolution Sentinel-2A images from 2019 to 2021 containing 4,194,304 pixels. The joint loss, including the label smoothing cross entropy and Dice coefficient, and the mean intersection over union (mIoU) were used to evaluate the model performance depending on different features and upsampling schemes. The joint loss and mIoU values of the training model and the prediction accuracies of the test sites indicate that the scheme including the upsampling and fusion of spectral bands, vegetation indices, and texture features yields the optimal model performance. For comparison, UNet, DeepLab V3+, Pyramid Scene Parsing Network (PSPNet), and random forest models were built. The improved UNet++ model exhibits the best performance, with an overall accuracy, kappa, and macro F 1 above 91 %, 85 %, and 51 %, respectively. The deep segmentation and classification results without training samples demonstrate the spatiotemporal transfer capability of the UNet++ architecture during the key crop growth period. The patch parameter values also indicate that the improved model exhibits a better shape compactness and significantly reduces and suppresses patch fragmentation. Based on the analysis of the overall confusion matrix, the proposed method improves the classification accuracy for datasets with imbalanced land cover and crop types. This study provides a strategy for large-scale and complex land use and crop mapping based on the integration of feature fusion and deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助银匠采纳,获得10
1秒前
Rainy完成签到,获得积分20
1秒前
2秒前
海棠朵朵完成签到 ,获得积分10
2秒前
yu完成签到,获得积分20
2秒前
2秒前
Owen应助金虎采纳,获得10
3秒前
mjr完成签到,获得积分10
3秒前
3秒前
NexusExplorer应助小于采纳,获得10
3秒前
4秒前
5秒前
上官若男应助金角大王采纳,获得10
5秒前
SciGPT应助liulongchao采纳,获得10
5秒前
徐丑发布了新的文献求助20
5秒前
嘎嘎嘎嘎发布了新的文献求助10
5秒前
Jenny完成签到,获得积分10
6秒前
wanci应助Li采纳,获得10
6秒前
星辰大海应助轻松的书南采纳,获得10
6秒前
6秒前
白斩鸡发布了新的文献求助10
8秒前
8秒前
和谐犀牛完成签到,获得积分10
8秒前
congconglyu发布了新的文献求助10
9秒前
9秒前
小迪完成签到,获得积分10
9秒前
10秒前
渊思发布了新的文献求助10
10秒前
FashionBoy应助schyoung采纳,获得10
11秒前
11秒前
幽默不乐完成签到,获得积分20
12秒前
12秒前
13秒前
13秒前
十个勤天完成签到,获得积分10
13秒前
cccw发布了新的文献求助30
14秒前
淡然发布了新的文献求助10
15秒前
刘珍荣完成签到,获得积分10
15秒前
孤独的根号4完成签到,获得积分10
15秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305256
求助须知:如何正确求助?哪些是违规求助? 2939124
关于积分的说明 8491585
捐赠科研通 2613571
什么是DOI,文献DOI怎么找? 1427501
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647747