Deep segmentation and classification of complex crops using multi-feature satellite imagery

卫星图像 人工智能 分割 特征(语言学) 遥感 航空影像 模式识别(心理学) 卫星 计算机科学 深度学习 计算机视觉 地质学 工程类 语言学 哲学 航空航天工程
作者
Lijun Wang,Jiayao Wang,Xiwang Zhang,Laigang Wang,Fen Qin
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:200: 107249-107249 被引量:16
标识
DOI:10.1016/j.compag.2022.107249
摘要

• An end-to-end transferable-learning approach is proposed in this study. • The class-imbalanced problem of traditional methods could be improved. • The improved UNet++ model outperforms other models in late crop growth periods. • The model with multi-feature can provide better spatiotemporal transferability. • The new model is suitable for regions with small differences in crop categories. Accurate remote sensing-based land use and crop maps provide important and timely information for decision support in large-scale agricultural monitoring. Most existing multi-crop products for complex agricultural areas based on traditional machine learning algorithms are not suitable for large agricultural management because of the poor model transfer capabilities. Therefore, a deep segmentation and classification model including spatiotemporal transfer across regions and years must be developed. In this study, a deep learning approach was developed based on the UNet++ architecture by integrating feature fusion and upsampling of small samples for large-scale land use and crop mapping. Classification experiments were conducted for ten categories at four sites using 10 m resolution Sentinel-2A images from 2019 to 2021 containing 4,194,304 pixels. The joint loss, including the label smoothing cross entropy and Dice coefficient, and the mean intersection over union (mIoU) were used to evaluate the model performance depending on different features and upsampling schemes. The joint loss and mIoU values of the training model and the prediction accuracies of the test sites indicate that the scheme including the upsampling and fusion of spectral bands, vegetation indices, and texture features yields the optimal model performance. For comparison, UNet, DeepLab V3+, Pyramid Scene Parsing Network (PSPNet), and random forest models were built. The improved UNet++ model exhibits the best performance, with an overall accuracy, kappa, and macro F 1 above 91 %, 85 %, and 51 %, respectively. The deep segmentation and classification results without training samples demonstrate the spatiotemporal transfer capability of the UNet++ architecture during the key crop growth period. The patch parameter values also indicate that the improved model exhibits a better shape compactness and significantly reduces and suppresses patch fragmentation. Based on the analysis of the overall confusion matrix, the proposed method improves the classification accuracy for datasets with imbalanced land cover and crop types. This study provides a strategy for large-scale and complex land use and crop mapping based on the integration of feature fusion and deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助xiaxianong采纳,获得10
刚刚
2秒前
乘风破浪完成签到,获得积分10
2秒前
egnaro应助埋骨何须桑梓地采纳,获得10
2秒前
yannnis发布了新的文献求助10
3秒前
孙福禄应助Star1983采纳,获得10
3秒前
3秒前
4秒前
Demonmaster完成签到,获得积分10
4秒前
元气糖发布了新的文献求助10
4秒前
凝望那片海2020完成签到,获得积分10
4秒前
清爽问夏发布了新的文献求助10
4秒前
5秒前
5秒前
Lee完成签到 ,获得积分10
5秒前
5秒前
钱小二发布了新的文献求助10
6秒前
6秒前
315947完成签到,获得积分10
6秒前
7秒前
冰阔落发布了新的文献求助10
7秒前
鳐鱼完成签到,获得积分10
7秒前
哈哈哈完成签到,获得积分10
7秒前
李健的小迷弟应助egnaro采纳,获得30
7秒前
没什么是看文献解决不了的完成签到,获得积分10
8秒前
害怕的凡英完成签到,获得积分10
8秒前
收集快乐发布了新的文献求助10
8秒前
青云发布了新的文献求助10
9秒前
可可完成签到 ,获得积分10
9秒前
Dank1ng完成签到,获得积分10
9秒前
星辰大海应助rinki01采纳,获得10
9秒前
哈哈哈发布了新的文献求助10
10秒前
活泼的南风完成签到 ,获得积分10
10秒前
T拐拐发布了新的文献求助10
11秒前
慕青应助yannnis采纳,获得10
11秒前
上官若男应助明明采纳,获得10
11秒前
上官若男应助过意采纳,获得10
11秒前
qly发布了新的文献求助10
11秒前
wangyalei发布了新的文献求助10
12秒前
孙福禄应助void科学家采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600