EEG-based BCI: A novel improvement for EEG signals classification based on real-time preprocessing

计算机科学 预处理器 脑电图 人工智能 模式识别(心理学) 脑-机接口 二元分类 二进制数 稳健性(进化) 分类器(UML) 支持向量机 数学 算术 化学 精神科 基因 生物化学 心理学
作者
Said Abenna,Mohammed Nahid,Hamid Bouyghf,Brahim Ouacha
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:148: 105931-105931 被引量:19
标识
DOI:10.1016/j.compbiomed.2022.105931
摘要

This work aims to improve EEG signal binary and multiclass classification for real-time BCI applications. Therefore, our paper discusses the results of a new real-time approach that was integrated into a complete prediction system, where we proposed a new trick to eliminate the effect of EEG's non-stationarity nature. This improvement can increase the accuracy from 50% using raw EEG to the order of 90% after preprocessing step in the binary case and from 28% to 78% in the multiclass case. Then, we chose to filter all signals by the proposed bandpass filter automatically optimized using the sine cosine algorithm (SCA) to find the optimal bandwidth that contains the entire EEG characteristics in beta waves. Moreover, we used a common spatial pattern (CSP) filter to eliminate the correlation between all extracted features. Then, the light gradient boosting machine (LGBM) classifier is also combined with SCA algorithm to build better prediction models. As a result, the outcome system was applied on UCI and PhysioNet datasets to get excellent accuracy values of higher than 99% and 95%, respectively, using the data acquired only from three channels. On the other hand, the related works used all the data acquired from 14 channels to find an accuracy value between 70% and 98.5%, which shows the robustness of our method to improve EEG signal prediction quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
30完成签到,获得积分10
1秒前
2秒前
3秒前
华仔应助pica采纳,获得10
3秒前
30发布了新的文献求助30
4秒前
CodeCraft应助L112233采纳,获得10
6秒前
6秒前
ff完成签到 ,获得积分10
7秒前
9秒前
10秒前
12秒前
科研的苦发布了新的文献求助10
12秒前
14秒前
xjh发布了新的文献求助20
14秒前
Xman发布了新的文献求助30
14秒前
怂mi完成签到,获得积分10
15秒前
double ting发布了新的文献求助10
18秒前
19秒前
20秒前
22秒前
23秒前
25秒前
25秒前
26秒前
Cynthia完成签到 ,获得积分10
27秒前
28秒前
Hesm发布了新的文献求助10
28秒前
29秒前
酷波er应助科研通管家采纳,获得10
29秒前
烟花应助科研通管家采纳,获得10
30秒前
所所应助科研通管家采纳,获得10
30秒前
Orange应助科研通管家采纳,获得10
30秒前
夏筱应助科研通管家采纳,获得10
30秒前
万能图书馆应助xzw采纳,获得10
30秒前
萧水白应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
领导范儿应助科研通管家采纳,获得10
30秒前
jinchen发布了新的文献求助10
31秒前
不吃芹菜完成签到,获得积分10
31秒前
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309791
求助须知:如何正确求助?哪些是违规求助? 2943034
关于积分的说明 8512084
捐赠科研通 2618067
什么是DOI,文献DOI怎么找? 1430810
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649469