FedTwin: Blockchain-Enabled Adaptive Asynchronous Federated Learning for Digital Twin Networks

计算机科学 差别隐私 异步通信 计算机网络 分布式计算 数据挖掘
作者
Youyang Qu,Longxiang Gao,Yong Xiang,Shigen Shen,Shui Yu
出处
期刊:IEEE Network [Institute of Electrical and Electronics Engineers]
卷期号:36 (6): 183-190 被引量:43
标识
DOI:10.1109/mnet.105.2100620
摘要

The fast proliferation of digital twin (DT) establishes a direct connection between the physical entity and its deployed digital representation. As markets shift toward mass customization and new service delivery models, the digital representation has become more adaptive and agile by forming digital twin networks (DTNs). The DTN institutes a real-time single source of truth everywhere. However, there are several issues preventing DTNs from further application, including centralized processing, data falsification, privacy leakage, lack of incentive mechanism, and so on. To make DTN better meet the ever changing demands, we propose a novel block-chain-enabled adaptive asynchronous federated learning (FedTwin) paradigm for privacy-preserving and decentralized DTNs. We design Proof-of-Federalism (PoF), which is a tailor-made consensus algorithm for autonomous DTNs. In each DT's local training phase, generative adversarial network enhanced differential privacy is used to protect the privacy of local model parameters, while a modified Isolation Forest is deployed to filter out the falsified DTs. In the global aggregation phase, an improved Markov decision process is leveraged to select optimal DTs to achieve adaptive asynchronous aggregation while providing a rollback mechanism to redact the falsified global models. With this article, we aim to provide insights to forthcoming researchers and readers in this under-explored domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
codedlock发布了新的文献求助10
2秒前
3秒前
3秒前
田様应助科研通管家采纳,获得10
3秒前
jjccaa发布了新的文献求助20
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
122319应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
丘比特应助666采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
122319应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
ccm应助科研通管家采纳,获得10
4秒前
4秒前
天王老子发布了新的文献求助10
4秒前
小青椒应助科研通管家采纳,获得30
4秒前
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
ccm应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
Lucas应助CM采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708