FedTwin: Blockchain-Enabled Adaptive Asynchronous Federated Learning for Digital Twin Networks

计算机科学 差别隐私 异步通信 计算机网络 分布式计算 数据挖掘
作者
Youyang Qu,Longxiang Gao,Yong Xiang,Shigen Shen,Shui Yu
出处
期刊:IEEE Network [Institute of Electrical and Electronics Engineers]
卷期号:36 (6): 183-190 被引量:43
标识
DOI:10.1109/mnet.105.2100620
摘要

The fast proliferation of digital twin (DT) establishes a direct connection between the physical entity and its deployed digital representation. As markets shift toward mass customization and new service delivery models, the digital representation has become more adaptive and agile by forming digital twin networks (DTNs). The DTN institutes a real-time single source of truth everywhere. However, there are several issues preventing DTNs from further application, including centralized processing, data falsification, privacy leakage, lack of incentive mechanism, and so on. To make DTN better meet the ever changing demands, we propose a novel block-chain-enabled adaptive asynchronous federated learning (FedTwin) paradigm for privacy-preserving and decentralized DTNs. We design Proof-of-Federalism (PoF), which is a tailor-made consensus algorithm for autonomous DTNs. In each DT's local training phase, generative adversarial network enhanced differential privacy is used to protect the privacy of local model parameters, while a modified Isolation Forest is deployed to filter out the falsified DTs. In the global aggregation phase, an improved Markov decision process is leveraged to select optimal DTs to achieve adaptive asynchronous aggregation while providing a rollback mechanism to redact the falsified global models. With this article, we aim to provide insights to forthcoming researchers and readers in this under-explored domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fishchips发布了新的文献求助10
刚刚
刚刚
SciGPT应助tS717采纳,获得10
1秒前
自觉的涵易完成签到 ,获得积分10
1秒前
Hello应助自由南珍采纳,获得10
2秒前
苹果煎饼完成签到,获得积分10
3秒前
3秒前
杨小冬发布了新的文献求助10
3秒前
倒霉蛋完成签到,获得积分10
4秒前
庄严发布了新的文献求助10
4秒前
2401发布了新的文献求助10
4秒前
4秒前
4秒前
zhaoqing完成签到,获得积分10
5秒前
5秒前
充电宝应助han采纳,获得10
6秒前
7秒前
ajiduo发布了新的文献求助10
8秒前
聿潇发布了新的文献求助10
9秒前
9秒前
华枝春满发布了新的文献求助10
9秒前
Islet1810发布了新的文献求助10
10秒前
10秒前
两米七发布了新的文献求助20
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
清脆青槐完成签到 ,获得积分10
14秒前
舒适花瓣发布了新的文献求助10
14秒前
luwenbin发布了新的文献求助10
15秒前
丘比特应助YF采纳,获得10
16秒前
游悠悠发布了新的文献求助10
17秒前
17秒前
风趣飞柏发布了新的文献求助10
17秒前
han发布了新的文献求助10
17秒前
劳恩特应助熊芳妮采纳,获得30
18秒前
wangyang完成签到 ,获得积分10
18秒前
18秒前
爆米花应助tao采纳,获得80
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406668
求助须知:如何正确求助?哪些是违规求助? 4524470
关于积分的说明 14098590
捐赠科研通 4438297
什么是DOI,文献DOI怎么找? 2436104
邀请新用户注册赠送积分活动 1428223
关于科研通互助平台的介绍 1406294