FedTwin: Blockchain-Enabled Adaptive Asynchronous Federated Learning for Digital Twin Networks

计算机科学 差别隐私 异步通信 计算机网络 分布式计算 数据挖掘
作者
Youyang Qu,Longxiang Gao,Yong Xiang,Shigen Shen,Shui Yu
出处
期刊:IEEE Network [Institute of Electrical and Electronics Engineers]
卷期号:36 (6): 183-190 被引量:43
标识
DOI:10.1109/mnet.105.2100620
摘要

The fast proliferation of digital twin (DT) establishes a direct connection between the physical entity and its deployed digital representation. As markets shift toward mass customization and new service delivery models, the digital representation has become more adaptive and agile by forming digital twin networks (DTNs). The DTN institutes a real-time single source of truth everywhere. However, there are several issues preventing DTNs from further application, including centralized processing, data falsification, privacy leakage, lack of incentive mechanism, and so on. To make DTN better meet the ever changing demands, we propose a novel block-chain-enabled adaptive asynchronous federated learning (FedTwin) paradigm for privacy-preserving and decentralized DTNs. We design Proof-of-Federalism (PoF), which is a tailor-made consensus algorithm for autonomous DTNs. In each DT's local training phase, generative adversarial network enhanced differential privacy is used to protect the privacy of local model parameters, while a modified Isolation Forest is deployed to filter out the falsified DTs. In the global aggregation phase, an improved Markov decision process is leveraged to select optimal DTs to achieve adaptive asynchronous aggregation while providing a rollback mechanism to redact the falsified global models. With this article, we aim to provide insights to forthcoming researchers and readers in this under-explored domain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助柚子采纳,获得10
刚刚
研友_GZbjPZ完成签到,获得积分10
1秒前
光亮的元容完成签到,获得积分10
1秒前
hong完成签到,获得积分10
2秒前
开朗棉花糖完成签到,获得积分10
2秒前
小杜发布了新的文献求助10
4秒前
5秒前
落尘完成签到 ,获得积分10
6秒前
Una发布了新的文献求助10
6秒前
土土完成签到,获得积分10
7秒前
yimengze完成签到,获得积分10
7秒前
汉堡包应助专一的摩托车采纳,获得10
9秒前
11秒前
tao完成签到,获得积分10
14秒前
小杜发布了新的文献求助20
15秒前
15秒前
17秒前
petrichor完成签到 ,获得积分10
17秒前
无极微光应助kndfsfmf采纳,获得20
18秒前
童童发布了新的文献求助10
18秒前
Robin发布了新的文献求助10
19秒前
20秒前
21秒前
阔达水之完成签到,获得积分10
25秒前
26秒前
26秒前
nan完成签到,获得积分10
26秒前
明天吖在吗完成签到,获得积分10
27秒前
27秒前
28秒前
zzf完成签到 ,获得积分10
29秒前
Nell发布了新的文献求助10
30秒前
秋半梦完成签到,获得积分10
31秒前
32秒前
33秒前
33秒前
33秒前
宋虹发布了新的文献求助10
35秒前
panda完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565478
求助须知:如何正确求助?哪些是违规求助? 4650535
关于积分的说明 14691776
捐赠科研通 4592467
什么是DOI,文献DOI怎么找? 2519635
邀请新用户注册赠送积分活动 1492028
关于科研通互助平台的介绍 1463244