Deep learning spatial phase unwrapping: a comparative review

深度学习 人工智能 计算机科学 人工神经网络 一般化 背景(考古学) 机器学习 模式识别(心理学) 数学 生物 数学分析 古生物学
作者
Kaiqiang Wang,Qian Kemao,Jianglei Di,Jianlin Zhao
标识
DOI:10.1117/1.apn.1.1.014001
摘要

Phase unwrapping is an indispensable step for many optical imaging and metrology techniques. The rapid development of deep learning has brought ideas to phase unwrapping. In the past four years, various phase dataset generation methods and deep-learning-involved spatial phase unwrapping methods have emerged quickly. However, these methods were proposed and analyzed individually, using different strategies, neural networks, and datasets, and applied to different scenarios. It is thus necessary to do a detailed comparison of these deep-learning-involved methods and the traditional methods in the same context. We first divide the phase dataset generation methods into random matrix enlargement, Gauss matrix superposition, and Zernike polynomials superposition, and then divide the deep-learning-involved phase unwrapping methods into deep-learning-performed regression, deep-learning-performed wrap count, and deep-learning-assisted denoising. For the phase dataset generation methods, the richness of the datasets and the generalization capabilities of the trained networks are compared in detail. In addition, the deep-learning-involved methods are analyzed and compared with the traditional methods in ideal, noisy, discontinuous, and aliasing cases. Finally, we give suggestions on the best methods for different situations and propose the potential development direction for the dataset generation method, neural network structure, generalization ability enhancement, and neural network training strategy for the deep-learning-involved spatial phase unwrapping methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小胡先森应助hhj采纳,获得10
刚刚
shen完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
如意以晴发布了新的文献求助10
2秒前
斯文中道发布了新的文献求助10
2秒前
3秒前
3秒前
在水一方应助Lenacici采纳,获得10
4秒前
4秒前
Ava应助油条采纳,获得20
4秒前
mrx完成签到,获得积分20
5秒前
Smiley发布了新的文献求助10
5秒前
Smiley发布了新的文献求助10
5秒前
6秒前
Xue发布了新的文献求助10
8秒前
zyshao发布了新的文献求助10
8秒前
8秒前
Hmn发布了新的文献求助10
9秒前
9秒前
mrx发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
ztt发布了新的文献求助10
11秒前
11秒前
12秒前
Tender完成签到,获得积分10
13秒前
jzmulyl发布了新的文献求助10
13秒前
甜甜的满天完成签到,获得积分10
13秒前
ZAJsci完成签到 ,获得积分10
14秒前
15秒前
耍酷小白菜完成签到,获得积分10
16秒前
17秒前
鸡蛋灌饼发布了新的文献求助10
18秒前
19秒前
19秒前
领导范儿应助欣慰妙海采纳,获得10
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126