Deep learning spatial phase unwrapping: a comparative review

深度学习 人工智能 计算机科学 人工神经网络 一般化 背景(考古学) 机器学习 模式识别(心理学) 数学 生物 数学分析 古生物学
作者
Kaiqiang Wang,Qian Kemao,Jianglei Di,Jianlin Zhao
标识
DOI:10.1117/1.apn.1.1.014001
摘要

Phase unwrapping is an indispensable step for many optical imaging and metrology techniques. The rapid development of deep learning has brought ideas to phase unwrapping. In the past four years, various phase dataset generation methods and deep-learning-involved spatial phase unwrapping methods have emerged quickly. However, these methods were proposed and analyzed individually, using different strategies, neural networks, and datasets, and applied to different scenarios. It is thus necessary to do a detailed comparison of these deep-learning-involved methods and the traditional methods in the same context. We first divide the phase dataset generation methods into random matrix enlargement, Gauss matrix superposition, and Zernike polynomials superposition, and then divide the deep-learning-involved phase unwrapping methods into deep-learning-performed regression, deep-learning-performed wrap count, and deep-learning-assisted denoising. For the phase dataset generation methods, the richness of the datasets and the generalization capabilities of the trained networks are compared in detail. In addition, the deep-learning-involved methods are analyzed and compared with the traditional methods in ideal, noisy, discontinuous, and aliasing cases. Finally, we give suggestions on the best methods for different situations and propose the potential development direction for the dataset generation method, neural network structure, generalization ability enhancement, and neural network training strategy for the deep-learning-involved spatial phase unwrapping methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小艾发布了新的文献求助50
4秒前
所所应助善良的沛山采纳,获得10
5秒前
5秒前
甜甜的盼海完成签到,获得积分10
5秒前
Ding-Ding完成签到,获得积分10
6秒前
奋斗的宛亦完成签到,获得积分20
7秒前
7秒前
念梦发布了新的文献求助10
7秒前
yoyo发布了新的文献求助10
8秒前
FashionBoy应助mint-WANG采纳,获得10
8秒前
MaskRuin完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
刘丹发布了新的文献求助10
12秒前
苒苒发布了新的文献求助30
16秒前
bao完成签到 ,获得积分10
16秒前
K先生发布了新的文献求助10
16秒前
17秒前
刘宇童完成签到,获得积分10
18秒前
19秒前
ChatGPT发布了新的文献求助50
19秒前
可爱的麻烦不嫌多完成签到,获得积分10
21秒前
22秒前
风清扬发布了新的文献求助10
22秒前
爱sun完成签到 ,获得积分10
22秒前
汉堡包应助apckkk采纳,获得10
23秒前
24秒前
25秒前
fdwang完成签到 ,获得积分10
25秒前
26秒前
下雨天就该睡大觉完成签到,获得积分10
26秒前
大模型应助wxxx采纳,获得10
28秒前
妮可发布了新的文献求助10
29秒前
隐形曼青应助Tia采纳,获得20
32秒前
34秒前
zhengyuci发布了新的文献求助30
34秒前
妮可完成签到,获得积分10
36秒前
pluto应助科研通管家采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194677
求助须知:如何正确求助?哪些是违规求助? 4376939
关于积分的说明 13630885
捐赠科研通 4232153
什么是DOI,文献DOI怎么找? 2321393
邀请新用户注册赠送积分活动 1319546
关于科研通互助平台的介绍 1269917