On the modeling of organic electrochemical transistors

晶体管 抽象 神经形态工程学 统一 纳米技术 有机半导体 计算机科学 物理 材料科学 人工智能 光电子学 量子力学 电压 人工神经网络 哲学 认识论 程序设计语言
作者
Lukas M. Bongartz,Matteo Cucchi,Karl Leo,Hans Kleemann
标识
DOI:10.1117/12.2633291
摘要

Due to their synaptic functionality based on interacting electronic and ionic charge carriers, organic electrochemical transistors (OECTs) appeal as highly attractive candidates for a new generation of organic neuromorphic devices. Despite their acknowledged application potential, little is still known about the underlying physics and traditional transistor models fail to accurately describe the phenomena observed. This deficiency comes in part from the fact that such models are largely based on an electrostatic approach for metal-oxide-semiconductor field-effect transistors (MOSFETs), which is a very strong abstraction to the volumetric and complex processes in OECTs. On the other hand, material studies reveal the potential of an alternative approach, taking into account the electrochemical processes by means of thermodynamics and thus considering the OECTs intricacy. These two approaches oppose each other in explaining OECTs, neither of which can claim a comprehensive explanation of the transistor on its own so far. A unification of the two sides, on the other hand, could come much closer to a substantial explanation and provide a more accurate picture of reality. After giving a short overview of the most significant concepts of the two explanatory directions, a framework is presented that might come very close to this merger, as it accurately reproduces essential transfer properties of OECTs in terms of thermodynamics for the first time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赵宇宙完成签到,获得积分10
1秒前
hahahaha完成签到,获得积分10
2秒前
3秒前
zz发布了新的文献求助10
3秒前
秋辞完成签到,获得积分10
3秒前
3秒前
maying0318发布了新的文献求助10
4秒前
西柚完成签到,获得积分10
4秒前
言言发布了新的文献求助10
5秒前
小蘑菇应助维他命采纳,获得10
6秒前
crystal完成签到,获得积分10
7秒前
7秒前
LM发布了新的文献求助10
8秒前
CA发布了新的文献求助10
9秒前
9秒前
9秒前
Eugene完成签到,获得积分10
9秒前
10秒前
Hello应助布拉布拉采纳,获得10
10秒前
BILNQPL完成签到,获得积分10
11秒前
嗨皮完成签到,获得积分10
12秒前
如日方升完成签到,获得积分10
12秒前
12秒前
万万想到了完成签到,获得积分10
13秒前
科研通AI5应助小小雨天采纳,获得10
13秒前
派大星发布了新的文献求助10
13秒前
15秒前
绘图功能发布了新的文献求助10
15秒前
修语完成签到,获得积分10
15秒前
鸭鸭发布了新的文献求助10
15秒前
Silence完成签到 ,获得积分10
15秒前
16秒前
汪汪发布了新的文献求助10
17秒前
18秒前
zz完成签到,获得积分10
18秒前
孤独剑完成签到,获得积分10
19秒前
研友_nEoEy8完成签到,获得积分10
19秒前
秋海棠发布了新的文献求助10
19秒前
喜悦音响发布了新的文献求助10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737724
求助须知:如何正确求助?哪些是违规求助? 3281359
关于积分的说明 10024958
捐赠科研通 2998099
什么是DOI,文献DOI怎么找? 1645066
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749814