SEPHS1: Its evolution, function and roles in development and diseases

生物 生物化学 细胞生物学 活性氧 功能(生物学) 化学
作者
Jeyoung Bang,Donghyun Kang,Jisu Jung,Tack-Jin Yoo,Myoung Sup Shim,Vadim N. Gladyshev,Petra A. Tsuji,Dolph L. Hatfield,Jin‐Hong Kim,Byeong Jae Lee
出处
期刊:Archives of Biochemistry and Biophysics [Elsevier]
卷期号:730: 109426-109426 被引量:7
标识
DOI:10.1016/j.abb.2022.109426
摘要

Selenophosphate synthetase (SEPHS) was originally discovered in prokaryotes as an enzyme that catalyzes selenophosphate synthesis using inorganic selenium and ATP as substrates. However, in contrast to prokaryotes, two paralogs, SEPHS1 and SEPHS2, occur in many eukaryotes. Prokaryotic SEPHS, also known as SelD, contains either cysteine (Cys) or selenocysteine (Sec) in the catalytic domain. In eukaryotes, only SEPHS2 carries out selenophosphate synthesis and contains Sec at the active site. However, SEPHS1 contains amino acids other than Sec or Cys at the catalytic position. Phylogenetic analysis of SEPHSs reveals that the ancestral SEPHS contains both selenophosphate synthesis and another unknown activity, and that SEPHS1 lost the selenophosphate synthesis activity. The three-dimensional structure of SEPHS1 suggests that its homodimer is unable to form selenophosphate, but retains ATPase activity to produce ADP and inorganic phosphate. The most prominent function of SEPHS1 is that it is implicated in the regulation of cellular redox homeostasis. Deficiency of SEPHS1 leads to the disturbance in the expression of genes involved in redox homeostasis. Different types of reactive oxygen species (ROS) are accumulated in response to SEPHS deficiency depending on cell or tissue types. The accumulation of ROS causes pleiotropic effects such as growth retardation, apoptosis, DNA damage, and embryonic lethality. SEPHS1 deficiency in mouse embryos affects retinoic signaling and other related signaling pathways depending on the embryonal stage until the embryo dies at E11.5. Dysregulated SEPHS1 is associated with the pathogenesis of various diseases including cancer, Crohn's disease, and osteoarthritis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
笠柚发布了新的文献求助10
刚刚
小疯狗完成签到,获得积分10
1秒前
丁满完成签到,获得积分10
2秒前
CheetahAzure完成签到,获得积分10
2秒前
姚琳发布了新的文献求助10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
SCINEXUS应助科研通管家采纳,获得10
2秒前
qqz发布了新的文献求助10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
校长发布了新的文献求助10
2秒前
2秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
Nansen完成签到,获得积分10
3秒前
852应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
薰硝壤应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
ShowMaker应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
薰硝壤应助科研通管家采纳,获得50
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
蝈蝈蝈完成签到 ,获得积分10
4秒前
yummy应助HanQing采纳,获得10
5秒前
5秒前
发发发布了新的文献求助10
6秒前
格子布发布了新的文献求助10
6秒前
6秒前
lrl完成签到,获得积分20
8秒前
9秒前
qqz完成签到,获得积分20
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152922
求助须知:如何正确求助?哪些是违规求助? 2804134
关于积分的说明 7857235
捐赠科研通 2461873
什么是DOI,文献DOI怎么找? 1310502
科研通“疑难数据库(出版商)”最低求助积分说明 629279
版权声明 601788