亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of reinforcement learning and model predictive control for building energy system optimization

强化学习 模型预测控制 控制器(灌溉) 灵活性(工程) 标杆管理 计算机科学 控制工程 高效能源利用 控制理论(社会学) 控制系统 控制(管理) 最优控制 工程类 人工智能 数学优化 统计 数学 电气工程 营销 农学 业务 生物
作者
Dan Wang,Wanfu Zheng,Zhe Wang,Yaran Wang,Xiufeng Pang,Wei Wang
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:228: 120430-120430 被引量:4
标识
DOI:10.1016/j.applthermaleng.2023.120430
摘要

Advanced controls could enhance buildings’ energy efficiency and operational flexibility while guaranteeing the indoor comfort. The control performance of reinforcement learning (RL) and model predictive control (MPC) have been widely studied in the literature. However, in existing studies, the reinforcement learning and model predictive control are tested in separate environments, making it challenging to directly compare their performance. In this paper, RL and MPC controls are implemented and compared with traditional rule-based controls in an open-source virtual environment to control a heat pump system of a residential house. The RL controllers were developed with three widely-used algorithms: Deep Deterministic Policy Gradient (DDPG), Dueling Deep Q Networks (DDQN), and Soft Actor Critic (SAC), and the MPC controller was developed using reduced-order thermal resistance-capacity network model. The building optimization testing (BOPTEST) framework is employed as a standardized virtual building simulator to conduct this study. The test case BOPTEST Hydronic Heat Pump is selected for the assessment and benchmarking of the control performance, data efficiency, implementation efforts and computational demands of the RL and MPC controllers. The comparison results revealed that for the RL controllers, only the DDPG algorithm outperforms the baseline controller in both the typical and peak heating scenarios. The MPC controller is superior to the RL and baseline controllers in both two scenarios because it can take the best possible action based on the current system state even with a model that deviates to a certain degree from reality. The findings of this study shed light on the selection of advanced building controllers among two promising candidates: MPC and RL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XiongLuck给XiongLuck的求助进行了留言
1秒前
1秒前
1秒前
方远锋完成签到,获得积分10
2秒前
星辰大海应助林lin采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
爱静静应助科研通管家采纳,获得30
9秒前
9秒前
爱静静应助科研通管家采纳,获得10
9秒前
WerWu完成签到,获得积分10
12秒前
chen完成签到,获得积分10
19秒前
21秒前
bkagyin应助CSS采纳,获得10
25秒前
XiongLuck发布了新的文献求助10
26秒前
46秒前
49秒前
liu完成签到,获得积分10
53秒前
liu发布了新的文献求助10
55秒前
徐叽钰应助liu采纳,获得20
1分钟前
1分钟前
魔幻问薇完成签到 ,获得积分10
1分钟前
顾矜应助huanglu采纳,获得10
1分钟前
不开心就吃糖完成签到 ,获得积分10
1分钟前
小蘑菇应助XiongLuck采纳,获得10
1分钟前
梅赛德斯奔驰完成签到,获得积分10
1分钟前
任ren完成签到 ,获得积分10
1分钟前
Akim应助cyk采纳,获得10
1分钟前
潼潼完成签到 ,获得积分10
1分钟前
kaustal完成签到,获得积分10
1分钟前
1分钟前
1分钟前
清新的芷发布了新的文献求助10
1分钟前
123发布了新的文献求助10
1分钟前
1分钟前
zxr完成签到 ,获得积分10
1分钟前
NexusExplorer应助jxx采纳,获得10
1分钟前
活力竺发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142628
求助须知:如何正确求助?哪些是违规求助? 2793540
关于积分的说明 7806835
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303444
科研通“疑难数据库(出版商)”最低求助积分说明 626917
版权声明 601314