Comparison of reinforcement learning and model predictive control for building energy system optimization

强化学习 模型预测控制 控制器(灌溉) 灵活性(工程) 标杆管理 计算机科学 控制工程 高效能源利用 控制理论(社会学) 控制系统 控制(管理) 最优控制 工程类 人工智能 数学优化 电气工程 营销 业务 统计 生物 数学 农学
作者
Dan Wang,Wanfu Zheng,Zhe Wang,Yaran Wang,Xiufeng Pang,Wei Wang
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:228: 120430-120430 被引量:4
标识
DOI:10.1016/j.applthermaleng.2023.120430
摘要

Advanced controls could enhance buildings’ energy efficiency and operational flexibility while guaranteeing the indoor comfort. The control performance of reinforcement learning (RL) and model predictive control (MPC) have been widely studied in the literature. However, in existing studies, the reinforcement learning and model predictive control are tested in separate environments, making it challenging to directly compare their performance. In this paper, RL and MPC controls are implemented and compared with traditional rule-based controls in an open-source virtual environment to control a heat pump system of a residential house. The RL controllers were developed with three widely-used algorithms: Deep Deterministic Policy Gradient (DDPG), Dueling Deep Q Networks (DDQN), and Soft Actor Critic (SAC), and the MPC controller was developed using reduced-order thermal resistance-capacity network model. The building optimization testing (BOPTEST) framework is employed as a standardized virtual building simulator to conduct this study. The test case BOPTEST Hydronic Heat Pump is selected for the assessment and benchmarking of the control performance, data efficiency, implementation efforts and computational demands of the RL and MPC controllers. The comparison results revealed that for the RL controllers, only the DDPG algorithm outperforms the baseline controller in both the typical and peak heating scenarios. The MPC controller is superior to the RL and baseline controllers in both two scenarios because it can take the best possible action based on the current system state even with a model that deviates to a certain degree from reality. The findings of this study shed light on the selection of advanced building controllers among two promising candidates: MPC and RL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑奇迹发布了新的文献求助10
刚刚
沐寒完成签到,获得积分10
刚刚
xiaojie完成签到 ,获得积分10
刚刚
1秒前
科研通AI6应助terryok采纳,获得10
1秒前
Jasper应助sugkook采纳,获得10
1秒前
1秒前
张豪杰发布了新的文献求助10
2秒前
3秒前
一二发布了新的文献求助10
3秒前
Jager.Z发布了新的文献求助10
4秒前
1nnoy发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
紫焰完成签到 ,获得积分10
6秒前
岁岁发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
lijinbei发布了新的文献求助10
7秒前
7秒前
7秒前
852应助HJJHJH采纳,获得10
7秒前
9秒前
LI电池完成签到,获得积分10
9秒前
晏清发布了新的文献求助10
9秒前
9秒前
9秒前
小仙女发布了新的文献求助10
10秒前
10秒前
宋23完成签到,获得积分10
10秒前
10秒前
10秒前
科研通AI2S应助lixm采纳,获得10
10秒前
11秒前
11秒前
华仔应助1nnoy采纳,获得10
11秒前
xxx完成签到,获得积分10
11秒前
邱穗发布了新的文献求助10
11秒前
研友完成签到,获得积分0
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728