Comparison of reinforcement learning and model predictive control for building energy system optimization

强化学习 模型预测控制 控制器(灌溉) 灵活性(工程) 标杆管理 计算机科学 控制工程 高效能源利用 控制理论(社会学) 控制系统 控制(管理) 最优控制 工程类 人工智能 数学优化 电气工程 营销 业务 统计 生物 数学 农学
作者
Dan Wang,Wanfu Zheng,Zhe Wang,Yaran Wang,Xiufeng Pang,Wei Wang
出处
期刊:Applied Thermal Engineering [Elsevier BV]
卷期号:228: 120430-120430 被引量:4
标识
DOI:10.1016/j.applthermaleng.2023.120430
摘要

Advanced controls could enhance buildings’ energy efficiency and operational flexibility while guaranteeing the indoor comfort. The control performance of reinforcement learning (RL) and model predictive control (MPC) have been widely studied in the literature. However, in existing studies, the reinforcement learning and model predictive control are tested in separate environments, making it challenging to directly compare their performance. In this paper, RL and MPC controls are implemented and compared with traditional rule-based controls in an open-source virtual environment to control a heat pump system of a residential house. The RL controllers were developed with three widely-used algorithms: Deep Deterministic Policy Gradient (DDPG), Dueling Deep Q Networks (DDQN), and Soft Actor Critic (SAC), and the MPC controller was developed using reduced-order thermal resistance-capacity network model. The building optimization testing (BOPTEST) framework is employed as a standardized virtual building simulator to conduct this study. The test case BOPTEST Hydronic Heat Pump is selected for the assessment and benchmarking of the control performance, data efficiency, implementation efforts and computational demands of the RL and MPC controllers. The comparison results revealed that for the RL controllers, only the DDPG algorithm outperforms the baseline controller in both the typical and peak heating scenarios. The MPC controller is superior to the RL and baseline controllers in both two scenarios because it can take the best possible action based on the current system state even with a model that deviates to a certain degree from reality. The findings of this study shed light on the selection of advanced building controllers among two promising candidates: MPC and RL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MM完成签到,获得积分10
刚刚
小科完成签到,获得积分10
刚刚
敏感的山晴完成签到 ,获得积分10
刚刚
杨秋月完成签到,获得积分10
1秒前
Psy完成签到,获得积分10
2秒前
七十二莳发布了新的文献求助10
2秒前
Ryan完成签到,获得积分10
2秒前
5秒前
Yara.H完成签到 ,获得积分10
5秒前
杳鸢应助yy采纳,获得10
6秒前
唐人达完成签到,获得积分10
6秒前
GDY发布了新的文献求助10
7秒前
7秒前
XIEMIN完成签到,获得积分10
8秒前
MaYi完成签到,获得积分10
9秒前
奋斗发布了新的文献求助10
11秒前
二月兰完成签到 ,获得积分10
11秒前
七十二莳完成签到,获得积分10
11秒前
李健应助jovrtic采纳,获得10
12秒前
OIIII应助唐人达采纳,获得20
12秒前
13秒前
再生极强的-涡虫完成签到,获得积分10
15秒前
无限的海豚完成签到,获得积分20
15秒前
优美的莹芝完成签到,获得积分10
16秒前
Dream点壹完成签到,获得积分10
17秒前
Darsine完成签到,获得积分10
17秒前
小孟吖完成签到 ,获得积分10
20秒前
zyx完成签到 ,获得积分10
21秒前
Jeff完成签到,获得积分10
22秒前
lzzk完成签到,获得积分10
23秒前
TY完成签到 ,获得积分10
24秒前
Summer完成签到 ,获得积分10
25秒前
26秒前
27秒前
Melody完成签到,获得积分10
28秒前
华仔应助简单采纳,获得10
28秒前
甜蜜的振家完成签到,获得积分10
29秒前
糖炒栗子完成签到,获得积分10
30秒前
LINDENG2004完成签到 ,获得积分10
30秒前
邱忠瑜发布了新的文献求助10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950009
求助须知:如何正确求助?哪些是违规求助? 3495337
关于积分的说明 11076302
捐赠科研通 3225863
什么是DOI,文献DOI怎么找? 1783324
邀请新用户注册赠送积分活动 867589
科研通“疑难数据库(出版商)”最低求助积分说明 800839