已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sketch Assisted Face Image Coding for Human and Machine Vision: a Joint Training Approach

计算机科学 人工智能 计算机视觉 素描 编解码器 编码(社会科学) 计算机硬件 统计 数学 算法
作者
Xin Fang,Yiping Duan,Qiyuan Du,Xiaoming Tao,Fan Li
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 6086-6100
标识
DOI:10.1109/tcsvt.2023.3262251
摘要

Image coding is one of the most fundamental techniques and is widely used in image/video processing and multimedia communications. Current image coding methods are mainly human-oriented, and the visual quality is always unsatisfactory, especially at low bitrates. Moreover, the recent emergence of machine vision goes beyond the scope of current coding. With these considerations, we proposed a sketch assisted face image coding for human and machine vision by a joint training approach. In the proposed approach, we design a new feature representation: a color sketch, which aims to satisfy both low-frequency features of human vision and high-frequency features of machine analysis. Then, we present a novel end-to-end image codec framework with joint training that consists of three models: an image-to-image translation module, a coding module, and a two-stage reconstruction module. Specifically, the input image is first translated into the edge map with the Canny edge as the auxiliary label to merely preserve the structure information. Afterward, the backpropagation from reconstruction module guides the edge map to increase or decrease the information through joint training, which results in the generation of color sketch. Then, the generated sketch is compressed into the bitstream and decompressed back to a sketch in the coding module. Finally, the decompressed sketch is reconstructed to support the machine and human tasks, respectively. In this way, the color sketch is designed to bridge the gap between human and machine vision, and the joint training strategy helps to adjust the low-frequency information in the sketch. The experimental results on challenge datasets demonstrate that our proposed algorithm offers 40.9%-86.6% bitrate savings on machine vision and is comparable to state-of-the-art image coding methods on human vision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
Lyuhng+1完成签到 ,获得积分10
8秒前
李鱼丸完成签到,获得积分10
8秒前
清逸之风完成签到 ,获得积分10
10秒前
谢永生发布了新的文献求助10
14秒前
Magali发布了新的文献求助10
15秒前
17秒前
marco应助冷酷的雁菡采纳,获得50
19秒前
123asd完成签到 ,获得积分10
20秒前
冷酷的雁菡完成签到,获得积分10
23秒前
24秒前
zzz完成签到 ,获得积分10
26秒前
gaoyue发布了新的文献求助10
27秒前
怕黑曲奇发布了新的文献求助10
28秒前
30秒前
笑点低怜阳完成签到,获得积分20
32秒前
单薄乐珍完成签到 ,获得积分10
32秒前
34秒前
34秒前
怕黑曲奇完成签到,获得积分10
38秒前
Lucas应助柒柒采纳,获得200
39秒前
41秒前
41秒前
王某完成签到 ,获得积分10
43秒前
友好白凡发布了新的文献求助10
46秒前
cocolu应助wmh采纳,获得30
48秒前
十二完成签到 ,获得积分10
49秒前
yelis完成签到 ,获得积分10
50秒前
姜姜完成签到 ,获得积分10
51秒前
美罗培南完成签到,获得积分10
51秒前
zhangyiwei完成签到,获得积分10
52秒前
谢永生完成签到,获得积分10
52秒前
D1fficulty完成签到 ,获得积分10
53秒前
汤万天完成签到,获得积分10
54秒前
54秒前
小刘哥加油完成签到 ,获得积分10
55秒前
58秒前
科研66666完成签到 ,获得积分10
59秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455552
求助须知:如何正确求助?哪些是违规求助? 3050804
关于积分的说明 9022690
捐赠科研通 2739358
什么是DOI,文献DOI怎么找? 1502673
科研通“疑难数据库(出版商)”最低求助积分说明 694565
邀请新用户注册赠送积分活动 693387