材料科学
钙钛矿(结构)
卤化物
锡
兴奋剂
热电效应
光电子学
半导体
载流子
有机半导体
功勋
掺杂剂
热电材料
纳米技术
电导率
无机化学
化学
热导率
物理化学
复合材料
结晶学
物理
冶金
热力学
作者
Haque, Md Azimul,Zhu, Tong,Hernandez, Luis Huerta,Tounesi, Roba,Combe, Craig,Davaasuren, Bambar,Emwas, Abdul-Hamid,de Arquer, F. Pelayo García,Sargent, Edward H.,Baran, Derya
出处
期刊:Cornell University - arXiv
日期:2023-03-29
标识
DOI:10.48550/arxiv.2303.16851
摘要
Achieving control over the transport properties of charge-carriers is a crucial aspect of realizing high-performance electronic materials. In metal-halide perovskites, which offer convenient manufacturing traits and tunability for certain optoelectronic applications, this is challenging: The perovskite structure itself, poses fundamental limits to maximum dopant incorporation. Here, we demonstrate an organic modifier incorporation strategy capable of modulating the electronic density of states in halide tin perovskites without altering the perovskite lattice, in a similar fashion to substitutional doping in traditional semiconductors. By incorporating organic small molecules and conjugated polymers into cesium tin iodide (CsSnI3) perovskites, we achieve carrier density tunability over 2.7 decades, transition from a semiconducting to a metallic nature, and high electrical conductivity exceeding 200 S/cm. We leverage these tunable and enhanced electronic properties to achieve a thin-film, lead free, thermoelectric material with a near room-temperature figure-of-merit (ZT) of 0.21, the highest amongst all halide perovskite thermoelectrics. Our strategy provides an additional degree of freedom in the design of halide perovskites for optoelectronic and energy applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI