已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Vo-Norvana : Versatile Framework for Efficient Segmentation of Large Point Cloud Data Sets

点云 计算机科学 激光雷达 摄影测量学 分割 计算机视觉 移动地图 瓶颈 工作流程 人工智能 遥感 激光扫描 聚类分析 由运动产生的结构 数据挖掘 地理 数据库 激光器 物理 光学 运动估计 嵌入式系统
作者
Erzhuo Che,Michael J. Olsen
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:37 (4) 被引量:1
标识
DOI:10.1061/jccee5.cpeng-4979
摘要

Dense three-dimensional (3D) point clouds collected from rapidly evolving data acquisition techniques such as light detection and ranging (lidar) and structure from motion (SfM) multiview stereo (MVS) photogrammetry contain detailed geometric information of a scene suitable for a wide variety of applications. Among the many processes within a typical point cloud processing workflow, segmentation is often a crucial step to group points with similar attributes to support more advanced modeling and analysis. Segmenting large point cloud data sets (i.e., hundreds of millions to billions of points) can be extremely time consuming and tedious with current tools, which primarily rely on significant manual effort. While many automated methods have been proposed, the practicality, scalability, and versatility of these approaches remain a bottleneck stifling processing of large data sets. To overcome these challenges, this paper introduces a novel, generalized segmentation framework called Vo-Norvana, which incorporates a new voxelization technique, a normal variation analysis considering the positioning uncertainty of the point cloud, and a custom region growing process for clustering. The proposed framework was tested with several large-volume data sets collected in diverse scene types using several data acquisition platforms including terrestrial lidar, mobile lidar, airborne lidar, and drone-based SfM-MVS photogrammetry. In evaluating the accuracy of models generated from Vo-Norvana against manual segmentation, the average error of the position, orientation, and dimensions are 2.7 mm, 0.083°, and 0.9 mm, respectively. Over 0.2 million points per second and 36 thousand voxels per second can be achieved when segmenting an airborne lidar data set containing over 639 million points to about 1 million segments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助slokni采纳,获得10
2秒前
SciGPT应助热情黄豆采纳,获得30
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得30
3秒前
我是老大应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得30
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
啊啊啊啊发布了新的文献求助10
5秒前
Oscillator发布了新的文献求助10
5秒前
立食劳栖完成签到,获得积分10
5秒前
清秀帆布鞋完成签到,获得积分10
10秒前
踏实的傲白完成签到 ,获得积分10
10秒前
11秒前
12秒前
bkagyin应助倒霉死了采纳,获得10
12秒前
丰知然应助penghuiye采纳,获得10
12秒前
12秒前
Singularity应助Oscillator采纳,获得10
14秒前
ZHY发布了新的文献求助10
16秒前
17秒前
zzrg完成签到,获得积分10
21秒前
ZHY完成签到,获得积分10
21秒前
22秒前
Zhang发布了新的文献求助10
22秒前
kxran发布了新的文献求助10
23秒前
24秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422600
求助须知:如何正确求助?哪些是违规求助? 3022971
关于积分的说明 8903137
捐赠科研通 2710435
什么是DOI,文献DOI怎么找? 1486430
科研通“疑难数据库(出版商)”最低求助积分说明 687061
邀请新用户注册赠送积分活动 682286