亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

H2Former: An Efficient Hierarchical Hybrid Transformer for Medical Image Segmentation

计算机科学 人工智能 图像分割 分割 失败 卷积神经网络 变压器 尺度空间分割 模式识别(心理学) 推论 基于分割的对象分类 计算复杂性理论 计算机视觉 算法 电压 工程类 并行计算 电气工程
作者
Along He,Kai Wang,Tao Li,Chengkun Du,Shuang Xia,Huazhu Fu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2763-2775 被引量:148
标识
DOI:10.1109/tmi.2023.3264513
摘要

Accurate medical image segmentation is of great significance for computer aided diagnosis. Although methods based on convolutional neural networks (CNNs) have achieved good results, it is weak to model the long-range dependencies, which is very important for segmentation task to build global context dependencies. The Transformers can establish long-range dependencies among pixels by self-attention, providing a supplement to the local convolution. In addition, multi-scale feature fusion and feature selection are crucial for medical image segmentation tasks, which is ignored by Transformers. However, it is challenging to directly apply self-attention to CNNs due to the quadratic computational complexity for high-resolution feature maps. Therefore, to integrate the merits of CNNs, multi-scale channel attention and Transformers, we propose an efficient hierarchical hybrid vision Transformer (H2Former) for medical image segmentation. With these merits, the model can be data-efficient for limited medical data regime. The experimental results show that our approach exceeds previous Transformer, CNNs and hybrid methods on three 2D and two 3D medical image segmentation tasks. Moreover, it keeps computational efficiency in model parameters, FLOPs and inference time. For example, H2Former outperforms TransUNet by 2.29% in IoU score on KVASIR-SEG dataset with 30.77% parameters and 59.23% FLOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一休发布了新的文献求助10
2秒前
雨之夏日发布了新的文献求助10
2秒前
3秒前
名卡卡发布了新的文献求助10
8秒前
飞快的奇异果完成签到 ,获得积分10
16秒前
甘草三七完成签到,获得积分10
20秒前
Kryptonite完成签到,获得积分10
26秒前
大麦完成签到 ,获得积分10
54秒前
Kevin完成签到 ,获得积分10
55秒前
浮游应助耶耶粘豆包采纳,获得10
1分钟前
1分钟前
5k全完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
可爱丹彤发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
友好寻真发布了新的文献求助20
1分钟前
yuxia发布了新的文献求助10
1分钟前
默默襄发布了新的文献求助10
1分钟前
1分钟前
as发布了新的文献求助10
1分钟前
Qwer完成签到 ,获得积分10
1分钟前
隐形曼青应助默默襄采纳,获得10
1分钟前
丘比特应助yuxia采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
就是梦而已完成签到,获得积分10
2分钟前
窝窝窝书完成签到,获得积分10
2分钟前
2分钟前
仁爱的狗发布了新的文献求助10
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302133
求助须知:如何正确求助?哪些是违规求助? 4449379
关于积分的说明 13848275
捐赠科研通 4335535
什么是DOI,文献DOI怎么找? 2380395
邀请新用户注册赠送积分活动 1375402
关于科研通互助平台的介绍 1341557