H2Former: An Efficient Hierarchical Hybrid Transformer for Medical Image Segmentation

计算机科学 人工智能 图像分割 分割 失败 卷积神经网络 变压器 尺度空间分割 模式识别(心理学) 推论 基于分割的对象分类 计算复杂性理论 计算机视觉 算法 电压 工程类 并行计算 电气工程
作者
Along He,Kai Wang,Tao Li,Chengkun Du,Shuang Xia,Huazhu Fu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2763-2775 被引量:227
标识
DOI:10.1109/tmi.2023.3264513
摘要

Accurate medical image segmentation is of great significance for computer aided diagnosis. Although methods based on convolutional neural networks (CNNs) have achieved good results, it is weak to model the long-range dependencies, which is very important for segmentation task to build global context dependencies. The Transformers can establish long-range dependencies among pixels by self-attention, providing a supplement to the local convolution. In addition, multi-scale feature fusion and feature selection are crucial for medical image segmentation tasks, which is ignored by Transformers. However, it is challenging to directly apply self-attention to CNNs due to the quadratic computational complexity for high-resolution feature maps. Therefore, to integrate the merits of CNNs, multi-scale channel attention and Transformers, we propose an efficient hierarchical hybrid vision Transformer (H2Former) for medical image segmentation. With these merits, the model can be data-efficient for limited medical data regime. The experimental results show that our approach exceeds previous Transformer, CNNs and hybrid methods on three 2D and two 3D medical image segmentation tasks. Moreover, it keeps computational efficiency in model parameters, FLOPs and inference time. For example, H2Former outperforms TransUNet by 2.29% in IoU score on KVASIR-SEG dataset with 30.77% parameters and 59.23% FLOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
繁荣的念双完成签到,获得积分10
1秒前
1秒前
xhjh03发布了新的文献求助10
1秒前
1秒前
2秒前
科研通AI2S应助unfraid采纳,获得10
2秒前
科研通AI2S应助如意的剑鬼采纳,获得10
2秒前
12完成签到,获得积分10
2秒前
玉玉鼠完成签到,获得积分10
3秒前
我是老大应助123采纳,获得10
3秒前
Akim应助王亲近采纳,获得10
4秒前
5秒前
奋斗灵凡完成签到,获得积分10
5秒前
5秒前
等乙天发布了新的文献求助10
6秒前
7秒前
猪米妮发布了新的文献求助10
7秒前
7秒前
8秒前
涂涂发布了新的文献求助10
9秒前
Dong发布了新的文献求助10
11秒前
12秒前
科研通AI6应助00采纳,获得10
12秒前
13秒前
嘿嘿发布了新的文献求助10
14秒前
14秒前
tuanheqi发布了新的文献求助20
16秒前
顺利兰完成签到,获得积分10
16秒前
浮游应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
东木应助科研通管家采纳,获得20
17秒前
浮游应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
A健应助科研通管家采纳,获得10
17秒前
sleep应助科研通管家采纳,获得20
17秒前
浮游应助科研通管家采纳,获得10
17秒前
优雅莞应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536760
求助须知:如何正确求助?哪些是违规求助? 4624404
关于积分的说明 14591829
捐赠科研通 4564906
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480743
关于科研通互助平台的介绍 1451989