亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

H2Former: An Efficient Hierarchical Hybrid Transformer for Medical Image Segmentation

计算机科学 人工智能 图像分割 分割 失败 卷积神经网络 变压器 尺度空间分割 模式识别(心理学) 推论 基于分割的对象分类 计算复杂性理论 计算机视觉 算法 电压 工程类 并行计算 电气工程
作者
Along He,Kai Wang,Tao Li,Chengkun Du,Shuang Xia,Huazhu Fu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2763-2775 被引量:227
标识
DOI:10.1109/tmi.2023.3264513
摘要

Accurate medical image segmentation is of great significance for computer aided diagnosis. Although methods based on convolutional neural networks (CNNs) have achieved good results, it is weak to model the long-range dependencies, which is very important for segmentation task to build global context dependencies. The Transformers can establish long-range dependencies among pixels by self-attention, providing a supplement to the local convolution. In addition, multi-scale feature fusion and feature selection are crucial for medical image segmentation tasks, which is ignored by Transformers. However, it is challenging to directly apply self-attention to CNNs due to the quadratic computational complexity for high-resolution feature maps. Therefore, to integrate the merits of CNNs, multi-scale channel attention and Transformers, we propose an efficient hierarchical hybrid vision Transformer (H2Former) for medical image segmentation. With these merits, the model can be data-efficient for limited medical data regime. The experimental results show that our approach exceeds previous Transformer, CNNs and hybrid methods on three 2D and two 3D medical image segmentation tasks. Moreover, it keeps computational efficiency in model parameters, FLOPs and inference time. For example, H2Former outperforms TransUNet by 2.29% in IoU score on KVASIR-SEG dataset with 30.77% parameters and 59.23% FLOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心树叶应助加菲丰丰采纳,获得50
2秒前
14秒前
movoandy完成签到,获得积分10
19秒前
19秒前
movoandy发布了新的文献求助10
24秒前
章鱼完成签到,获得积分10
29秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
情怀应助科研通管家采纳,获得10
35秒前
37秒前
无奈惜萱完成签到,获得积分20
38秒前
香蕉觅云应助metro采纳,获得10
40秒前
46秒前
46秒前
53秒前
ARESCI发布了新的文献求助10
58秒前
ARESCI完成签到,获得积分20
1分钟前
1分钟前
李爱国应助ARESCI采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
metro发布了新的文献求助10
2分钟前
圆滚滚的大肥猫完成签到,获得积分10
2分钟前
2分钟前
Ccccn完成签到,获得积分10
2分钟前
2分钟前
完美世界应助Hillson采纳,获得10
2分钟前
搜集达人应助PenguinC采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
PenguinC发布了新的文献求助10
3分钟前
3分钟前
4分钟前
秋刀鱼发布了新的文献求助10
4分钟前
酷炫小懒虫完成签到,获得积分0
4分钟前
加菲丰丰完成签到,获得积分0
4分钟前
充电宝应助Hoshino采纳,获得10
4分钟前
Yini应助FIN采纳,获得50
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554913
求助须知:如何正确求助?哪些是违规求助? 4639496
关于积分的说明 14656244
捐赠科研通 4581411
什么是DOI,文献DOI怎么找? 2512745
邀请新用户注册赠送积分活动 1487485
关于科研通互助平台的介绍 1458439