Machine learning-assisted data filtering and QSAR models for prediction of chemical acute toxicity on rat and mouse

数量结构-活动关系 化学毒性 急性毒性 机器学习 毒性 计算机科学 人工智能 计算生物学 生物 化学 有机化学
作者
Tao Bo,Yaohui Lin,Jinglong Han,Zhineng Hao,Jingfu Liu
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:452: 131344-131344 被引量:15
标识
DOI:10.1016/j.jhazmat.2023.131344
摘要

Machine learning (ML) methods provide a new opportunity to build quantitative structure-activity relationship (QSAR) models for predicting chemicals’ toxicity based on large toxicity data sets, but they are limited in insufficient model robustness due to poor data set quality for chemicals with certain structures. To address this issue and improve model robustness, we built a large data set on rat oral acute toxicity for thousands of chemicals, then used ML to filter chemicals favorable for regression models (CFRM). In comparison to chemicals not favorable for regression models (CNRM), CFRM accounted for 67% of chemicals in the original data set, and had a higher structural similarity and a smaller toxicity distribution in 2–4 log10 (mg/kg). The performance of established regression models for CFRM was greatly improved, with root-mean-square deviations (RMSE) in the range of 0.45–0.48 log10 (mg/kg). Classification models were built for CNRM using all chemicals in the original data set, and the area under receiver operating characteristic (AUROC) reached 0.75–0.76. The proposed strategy was successfully applied to a mouse oral acute data set, yielding RMSE and AUROC in the range of 0.36–0.38 log10 (mg/kg) and 0.79, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
小新爱看文献完成签到,获得积分10
2秒前
dsgfsdfg发布了新的文献求助10
3秒前
dream发布了新的文献求助10
4秒前
real发布了新的文献求助10
4秒前
4秒前
4秒前
kkkkkoi发布了新的文献求助10
5秒前
Urusaiina完成签到,获得积分10
5秒前
云枝完成签到,获得积分10
7秒前
王哥完成签到 ,获得积分10
8秒前
8秒前
心已死何来心完成签到,获得积分10
8秒前
van发布了新的文献求助10
9秒前
9秒前
07应助Light采纳,获得30
9秒前
失眠鸭完成签到,获得积分10
11秒前
Run完成签到,获得积分10
11秒前
善学以致用应助晁子枫采纳,获得10
11秒前
笨笨猪完成签到,获得积分10
11秒前
12秒前
夏虫不可语冰完成签到,获得积分10
12秒前
小海应助W-w采纳,获得10
13秒前
13秒前
adastra完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
NexusExplorer应助TaDLove采纳,获得10
13秒前
格格巫发布了新的文献求助10
14秒前
NexusExplorer应助懵懂的映雁采纳,获得10
14秒前
脑壳疼发布了新的文献求助10
14秒前
z3Q应助amumu采纳,获得10
14秒前
Afei发布了新的文献求助10
16秒前
传奇3应助baibai采纳,获得10
16秒前
17秒前
毅诚菌发布了新的文献求助10
17秒前
领导范儿应助杏仁儿采纳,获得10
17秒前
梁业松发布了新的文献求助10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305838
求助须知:如何正确求助?哪些是违规求助? 2939636
关于积分的说明 8494019
捐赠科研通 2613958
什么是DOI,文献DOI怎么找? 1427800
科研通“疑难数据库(出版商)”最低求助积分说明 663191
邀请新用户注册赠送积分活动 647988