亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-assisted data filtering and QSAR models for prediction of chemical acute toxicity on rat and mouse

数量结构-活动关系 化学毒性 急性毒性 机器学习 毒性 计算机科学 人工智能 计算生物学 生物 化学 有机化学
作者
Tao Bo,Yaohui Lin,Jinglong Han,Zhineng Hao,Jingfu Liu
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:452: 131344-131344 被引量:19
标识
DOI:10.1016/j.jhazmat.2023.131344
摘要

Machine learning (ML) methods provide a new opportunity to build quantitative structure-activity relationship (QSAR) models for predicting chemicals’ toxicity based on large toxicity data sets, but they are limited in insufficient model robustness due to poor data set quality for chemicals with certain structures. To address this issue and improve model robustness, we built a large data set on rat oral acute toxicity for thousands of chemicals, then used ML to filter chemicals favorable for regression models (CFRM). In comparison to chemicals not favorable for regression models (CNRM), CFRM accounted for 67% of chemicals in the original data set, and had a higher structural similarity and a smaller toxicity distribution in 2–4 log10 (mg/kg). The performance of established regression models for CFRM was greatly improved, with root-mean-square deviations (RMSE) in the range of 0.45–0.48 log10 (mg/kg). Classification models were built for CNRM using all chemicals in the original data set, and the area under receiver operating characteristic (AUROC) reached 0.75–0.76. The proposed strategy was successfully applied to a mouse oral acute data set, yielding RMSE and AUROC in the range of 0.36–0.38 log10 (mg/kg) and 0.79, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花公子完成签到,获得积分10
6秒前
sola完成签到 ,获得积分10
8秒前
懒羊羊大王完成签到 ,获得积分10
12秒前
22秒前
欢呼的寻双完成签到,获得积分10
30秒前
Mollyshimmer完成签到 ,获得积分10
31秒前
SCIfafafafa发布了新的文献求助10
1分钟前
duxiao完成签到 ,获得积分10
1分钟前
情怀应助SCIfafafafa采纳,获得10
1分钟前
小六子完成签到,获得积分10
1分钟前
Lucas应助duxiao采纳,获得10
1分钟前
Aaron完成签到 ,获得积分0
2分钟前
在水一方应助科研通管家采纳,获得30
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
2分钟前
Jasper应助hongtao采纳,获得10
2分钟前
3分钟前
JamesPei应助Fung采纳,获得10
3分钟前
3分钟前
心肝宝贝甜蜜饯完成签到,获得积分10
3分钟前
4分钟前
qiu发布了新的文献求助10
4分钟前
顾矜应助狂发文章采纳,获得10
4分钟前
4分钟前
Djnsbj发布了新的文献求助10
4分钟前
4分钟前
狂发文章发布了新的文献求助10
4分钟前
4分钟前
寒冷苗条应助Djnsbj采纳,获得10
4分钟前
小蘑菇应助Djnsbj采纳,获得10
4分钟前
狂发文章完成签到,获得积分10
4分钟前
4分钟前
4分钟前
duxiao发布了新的文献求助10
4分钟前
hongtao发布了新的文献求助10
4分钟前
4分钟前
Mandy发布了新的文献求助10
4分钟前
我好想睡完成签到,获得积分10
5分钟前
Iron_five完成签到 ,获得积分10
5分钟前
小二郎应助Mandy采纳,获得10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155650
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214