清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning-based precise prediction and early detection of radiation-induced temporal lobe injury for nasopharyngeal carcinoma

医学 鼻咽癌 一致性 放射治疗 地铁列车时刻表 回顾性队列研究 肿瘤科 内科学 计算机科学 操作系统
作者
Pu‐Yun OuYang,Bao-Yu Zhang,Jin Guo,Jiani Liu,Jiajian Li,Qifeng Peng,Shanshan Yang,Yun He,Zhi-Qiao Liu,Yanan Zhao,Anwei Li,Yi‐Shan Wu,Xuefeng Hu,Chen Chen,Fei Han,Kaiyun You,Fang‐Yun Xie
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:58: 101930-101930 被引量:7
标识
DOI:10.1016/j.eclinm.2023.101930
摘要

Radiotherapy is the mainstay of treatment for nasopharyngeal carcinoma. Radiation-induced temporal lobe injury (TLI) can regress or resolve in the early phase, but it is irreversible at a later stage. However, no study has proposed a risk-based follow-up schedule for its early detection. Planning evaluation is difficult when dose-volume histogram (DVH) parameters are similar and optimization is terminated.This multicenter retrospective study included 6065 patients between 2014 and 2018. A 3D ResNet-based deep learning model was developed in training and validation cohorts and independently tested using concordance index in internal and external test cohorts. Accordingly, the patients were stratified into risk groups, and the model-predicted risks were used to develop risk-based follow-up schedules. The schedule was compared with the Radiation Therapy Oncology Group (RTOG) recommendation (every 3 months during the first 2 years and every 6 months in 3-5 years). Additionally, the model was used to evaluate plans with similar DVH parameters.Our model achieved concordance indexes of 0.831, 0.818, and 0.804, respectively, which outperformed conventional prediction models (all P < 0.001). The temporal lobes in all the cohorts were stratified into three groups with discrepant TLI-free survival. Personalized follow-up schedules developed for each risk group could detect TLI 1.9 months earlier than the RTOG recommendation. According to a higher median predicted 3-year TLI-free survival (99.25% vs. 99.15%, P < 0.001), the model identified a better plan than previous models.The deep learning model predicted TLI more precisely. The model-determined risk-based follow-up schedule detected the TLI earlier. The planning evaluation was refined because the model identified a better plan with a lower risk of TLI.The Sun Yat-sen University Clinical Research 5010 Program (2015020), Guangdong Basic and Applied Basic Research Foundation (2022A1515110356), Medical Scientific Research Foundation of Guangdong Province (A2022367), and Guangzhou Science and Technology Program (2023A04J1788).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
脑洞疼应助舒适以松采纳,获得10
8秒前
乏味发布了新的文献求助30
8秒前
Yjj完成签到,获得积分20
10秒前
张wx_100完成签到,获得积分10
11秒前
laiba完成签到,获得积分10
28秒前
河豚不擦鞋完成签到 ,获得积分10
37秒前
我是老大应助乏味采纳,获得30
39秒前
Sunny完成签到,获得积分10
44秒前
56秒前
1分钟前
乏味发布了新的文献求助30
1分钟前
科研佟完成签到 ,获得积分10
1分钟前
徐团伟完成签到 ,获得积分10
1分钟前
小西完成签到 ,获得积分10
1分钟前
wuqi完成签到 ,获得积分10
1分钟前
Herbs完成签到 ,获得积分10
1分钟前
jxz9510完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
jlwang完成签到,获得积分10
2分钟前
乏味发布了新的文献求助10
2分钟前
2分钟前
2分钟前
像猫的狗完成签到 ,获得积分10
2分钟前
幽默梦山完成签到,获得积分20
2分钟前
幽默梦山发布了新的文献求助10
2分钟前
zzgpku完成签到,获得积分0
2分钟前
在水一方应助幽默梦山采纳,获得10
2分钟前
平常的三问完成签到 ,获得积分10
3分钟前
3分钟前
华仔应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
kean1943完成签到,获得积分10
3分钟前
minnie完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
缓慢的蜗牛完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015400
求助须知:如何正确求助?哪些是违规求助? 3555341
关于积分的说明 11317993
捐赠科研通 3288651
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812000