Development and validation of nomograms to predict early death in non-small cell lung cancer patients with brain metastasis: a retrospective study in the SEER database

医学 列线图 脑转移 内科学 肺癌 肿瘤科 阶段(地层学) 转移 单变量分析 癌症 监测、流行病学和最终结果 接收机工作特性 骨转移 多元分析 癌症登记处 古生物学 生物
作者
Yang Feng,Lianjun Gao,Qimin Wang,Wei Gao
出处
期刊:Translational cancer research [AME Publishing Company]
卷期号:12 (3): 473-489 被引量:1
标识
DOI:10.21037/tcr-22-2323
摘要

Throughout the course of non-small cell lung cancer (NSCLC), a lot of patients would develop brain metastasis (BM) associated with the poor prognosis and high rate of mortality. However, there have been few models to predict early death (ED) from NSCLC patients with BM. We aimed to develop nomograms to predict ED in NSCLC patients with BM.The NSCLC patients with BM between 2010 and 2015 were selected from the Surveillance, Epidemiology, and End Result (SEER) database. Our inclusion criteria were as follows: (I) patients were pathologically diagnosed as NSCLC; (II) patients who suffered from BM. The patients were randomly divided into 2 cohorts at the ratio of 7:3, for training and validation cohorts, respectively. The univariate and multivariate logistic regression methods were managed to identify risk factors for ED in NSCLC patients with BM. Two nomograms were established and validated by calibration curves, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA). The follow-up data included survival months, causes of death, vital status. Death that occurred within 3 months of initial diagnosis is defined as ED and the endpoints were all-cause ED and cancer-specific ED.A total of 4,920 NSCLC patients with BM were included and randomly divided into 2 cohorts (7:3), including the training (n=3,444) and validation (n=1,476) cohorts. The independent prognostic factors for all-cause ED and cancer-specific ED included age, sex, race, tumor size, histology, T stage, N stage, grade, surgical operation, radiotherapy, chemotherapy, bone metastasis, and liver metastasis. All these variables were used to establish the nomograms. In the nomograms of all-cause and cancer-specific ED, the areas under the ROC curves were 0.813 (95% CI: 0.799-0.837) and 0.808 (95% CI: 0.791-0.830) for the training dataset as well as 0.835 (95% CI: 0.805-0.862) and 0.824 (95% CI: 0.790-0.849) for the validation dataset, respectively. Besides, the calibration curves proved that the predicted ED was consistent with the actual value. DCA suggested a good clinical application.The nomograms can be used to predict the specific probability of a patient's death, which aids in treatment decisions and focused care, as well as in physician-patient communication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小5老师完成签到,获得积分10
刚刚
李爱国应助指北针采纳,获得10
刚刚
1秒前
luffy完成签到 ,获得积分10
1秒前
1秒前
我是老大应助优雅老六采纳,获得10
1秒前
1秒前
等等等等完成签到,获得积分10
1秒前
画大饼发布了新的文献求助10
1秒前
2秒前
123~!完成签到,获得积分10
2秒前
挖掘机完成签到,获得积分10
2秒前
2秒前
luyunxing完成签到,获得积分10
3秒前
zxy929600959完成签到,获得积分10
3秒前
3秒前
日匀完成签到,获得积分20
4秒前
Sandwich完成签到,获得积分20
4秒前
karan完成签到,获得积分10
4秒前
Evelyn完成签到,获得积分10
4秒前
5秒前
XW完成签到,获得积分10
5秒前
enterdawn完成签到,获得积分10
5秒前
小L完成签到,获得积分10
5秒前
5秒前
Owen应助Re采纳,获得10
5秒前
123455完成签到,获得积分10
5秒前
6秒前
tanx发布了新的文献求助10
6秒前
硬币完成签到,获得积分10
6秒前
约定看星星啊完成签到,获得积分10
6秒前
欣__发布了新的文献求助10
6秒前
7秒前
pancake发布了新的文献求助10
7秒前
8秒前
sunfhz完成签到 ,获得积分10
8秒前
8秒前
8秒前
zxy929600959发布了新的文献求助30
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257269
求助须知:如何正确求助?哪些是违规求助? 4419464
关于积分的说明 13756172
捐赠科研通 4292683
什么是DOI,文献DOI怎么找? 2355623
邀请新用户注册赠送积分活动 1352050
关于科研通互助平台的介绍 1312824