Development and validation of nomograms to predict early death in non-small cell lung cancer patients with brain metastasis: a retrospective study in the SEER database

医学 列线图 脑转移 内科学 肺癌 肿瘤科 阶段(地层学) 转移 单变量分析 癌症 监测、流行病学和最终结果 接收机工作特性 骨转移 多元分析 癌症登记处 古生物学 生物
作者
Yang Feng,Lianjun Gao,Qimin Wang,Wei Gao
出处
期刊:Translational cancer research [AME Publishing Company]
卷期号:12 (3): 473-489 被引量:1
标识
DOI:10.21037/tcr-22-2323
摘要

Throughout the course of non-small cell lung cancer (NSCLC), a lot of patients would develop brain metastasis (BM) associated with the poor prognosis and high rate of mortality. However, there have been few models to predict early death (ED) from NSCLC patients with BM. We aimed to develop nomograms to predict ED in NSCLC patients with BM.The NSCLC patients with BM between 2010 and 2015 were selected from the Surveillance, Epidemiology, and End Result (SEER) database. Our inclusion criteria were as follows: (I) patients were pathologically diagnosed as NSCLC; (II) patients who suffered from BM. The patients were randomly divided into 2 cohorts at the ratio of 7:3, for training and validation cohorts, respectively. The univariate and multivariate logistic regression methods were managed to identify risk factors for ED in NSCLC patients with BM. Two nomograms were established and validated by calibration curves, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA). The follow-up data included survival months, causes of death, vital status. Death that occurred within 3 months of initial diagnosis is defined as ED and the endpoints were all-cause ED and cancer-specific ED.A total of 4,920 NSCLC patients with BM were included and randomly divided into 2 cohorts (7:3), including the training (n=3,444) and validation (n=1,476) cohorts. The independent prognostic factors for all-cause ED and cancer-specific ED included age, sex, race, tumor size, histology, T stage, N stage, grade, surgical operation, radiotherapy, chemotherapy, bone metastasis, and liver metastasis. All these variables were used to establish the nomograms. In the nomograms of all-cause and cancer-specific ED, the areas under the ROC curves were 0.813 (95% CI: 0.799-0.837) and 0.808 (95% CI: 0.791-0.830) for the training dataset as well as 0.835 (95% CI: 0.805-0.862) and 0.824 (95% CI: 0.790-0.849) for the validation dataset, respectively. Besides, the calibration curves proved that the predicted ED was consistent with the actual value. DCA suggested a good clinical application.The nomograms can be used to predict the specific probability of a patient's death, which aids in treatment decisions and focused care, as well as in physician-patient communication.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jackie able发布了新的文献求助10
刚刚
CCC完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
郑浚杳完成签到,获得积分20
2秒前
火力全开完成签到,获得积分10
3秒前
yr完成签到,获得积分10
4秒前
5秒前
今后应助dong采纳,获得10
6秒前
夹心贝完成签到,获得积分10
6秒前
7秒前
8秒前
曈12完成签到 ,获得积分10
9秒前
9秒前
wennnnn完成签到,获得积分10
10秒前
slience发布了新的文献求助10
11秒前
标致香完成签到,获得积分10
13秒前
orixero应助wennnnn采纳,获得10
13秒前
文艺的冬日完成签到,获得积分10
14秒前
cookies12发布了新的文献求助10
14秒前
bu完成签到,获得积分10
15秒前
15秒前
ldy完成签到,获得积分10
19秒前
slience完成签到,获得积分10
20秒前
22秒前
cookies12完成签到,获得积分10
23秒前
25秒前
25秒前
爆米花应助wasailinlaomu采纳,获得10
27秒前
脑洞疼应助都美秋采纳,获得10
27秒前
29秒前
dong发布了新的文献求助10
29秒前
秀丽奎完成签到 ,获得积分10
29秒前
123456完成签到,获得积分10
30秒前
30秒前
量子星尘发布了新的文献求助10
31秒前
科研通AI2S应助xdc采纳,获得10
31秒前
隐形曼青应助xdc采纳,获得10
31秒前
SciGPT应助数星星采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742035
求助须知:如何正确求助?哪些是违规求助? 5405283
关于积分的说明 15343770
捐赠科研通 4883510
什么是DOI,文献DOI怎么找? 2625039
邀请新用户注册赠送积分活动 1573909
关于科研通互助平台的介绍 1530861