Development and validation of nomograms to predict early death in non-small cell lung cancer patients with brain metastasis: a retrospective study in the SEER database

医学 列线图 脑转移 内科学 肺癌 肿瘤科 阶段(地层学) 转移 单变量分析 癌症 监测、流行病学和最终结果 接收机工作特性 骨转移 多元分析 癌症登记处 古生物学 生物
作者
Yang Feng,Lianjun Gao,Qimin Wang,Wei Gao
出处
期刊:Translational cancer research [AME Publishing Company]
卷期号:12 (3): 473-489 被引量:1
标识
DOI:10.21037/tcr-22-2323
摘要

Throughout the course of non-small cell lung cancer (NSCLC), a lot of patients would develop brain metastasis (BM) associated with the poor prognosis and high rate of mortality. However, there have been few models to predict early death (ED) from NSCLC patients with BM. We aimed to develop nomograms to predict ED in NSCLC patients with BM.The NSCLC patients with BM between 2010 and 2015 were selected from the Surveillance, Epidemiology, and End Result (SEER) database. Our inclusion criteria were as follows: (I) patients were pathologically diagnosed as NSCLC; (II) patients who suffered from BM. The patients were randomly divided into 2 cohorts at the ratio of 7:3, for training and validation cohorts, respectively. The univariate and multivariate logistic regression methods were managed to identify risk factors for ED in NSCLC patients with BM. Two nomograms were established and validated by calibration curves, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA). The follow-up data included survival months, causes of death, vital status. Death that occurred within 3 months of initial diagnosis is defined as ED and the endpoints were all-cause ED and cancer-specific ED.A total of 4,920 NSCLC patients with BM were included and randomly divided into 2 cohorts (7:3), including the training (n=3,444) and validation (n=1,476) cohorts. The independent prognostic factors for all-cause ED and cancer-specific ED included age, sex, race, tumor size, histology, T stage, N stage, grade, surgical operation, radiotherapy, chemotherapy, bone metastasis, and liver metastasis. All these variables were used to establish the nomograms. In the nomograms of all-cause and cancer-specific ED, the areas under the ROC curves were 0.813 (95% CI: 0.799-0.837) and 0.808 (95% CI: 0.791-0.830) for the training dataset as well as 0.835 (95% CI: 0.805-0.862) and 0.824 (95% CI: 0.790-0.849) for the validation dataset, respectively. Besides, the calibration curves proved that the predicted ED was consistent with the actual value. DCA suggested a good clinical application.The nomograms can be used to predict the specific probability of a patient's death, which aids in treatment decisions and focused care, as well as in physician-patient communication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz完成签到,获得积分10
刚刚
wqy发布了新的文献求助10
1秒前
4秒前
4秒前
6秒前
6秒前
徐北游发布了新的文献求助10
6秒前
7秒前
QQQ完成签到,获得积分10
8秒前
9秒前
Ziqingserra完成签到 ,获得积分10
10秒前
英姑应助白色的猫猫采纳,获得10
10秒前
FashionBoy应助Jerry采纳,获得10
10秒前
雪泥发布了新的文献求助10
11秒前
Dinglin发布了新的文献求助10
11秒前
bluesky发布了新的文献求助10
13秒前
14秒前
szhshq发布了新的文献求助10
14秒前
15秒前
典雅的听筠完成签到,获得积分10
16秒前
竹焚完成签到 ,获得积分10
16秒前
18秒前
林子完成签到 ,获得积分10
18秒前
huangbing123发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
20秒前
wqy完成签到,获得积分10
21秒前
20240901发布了新的文献求助10
23秒前
满鑫完成签到,获得积分10
23秒前
Rory完成签到 ,获得积分10
23秒前
24秒前
24秒前
代纤绮完成签到,获得积分10
25秒前
25秒前
mmr发布了新的文献求助10
26秒前
aafrr完成签到 ,获得积分10
26秒前
Conccuc发布了新的文献求助10
26秒前
36456657应助聪明的宛菡采纳,获得10
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4024121
求助须知:如何正确求助?哪些是违规求助? 3564038
关于积分的说明 11344130
捐赠科研通 3295295
什么是DOI,文献DOI怎么找? 1815040
邀请新用户注册赠送积分活动 889661
科研通“疑难数据库(出版商)”最低求助积分说明 813091