Development and validation of nomograms to predict early death in non-small cell lung cancer patients with brain metastasis: a retrospective study in the SEER database

医学 列线图 脑转移 内科学 肺癌 肿瘤科 阶段(地层学) 转移 单变量分析 癌症 监测、流行病学和最终结果 接收机工作特性 骨转移 多元分析 癌症登记处 古生物学 生物
作者
Yang Feng,Lianjun Gao,Qimin Wang,Wei Gao
出处
期刊:Translational cancer research [AME Publishing Company]
卷期号:12 (3): 473-489 被引量:1
标识
DOI:10.21037/tcr-22-2323
摘要

Throughout the course of non-small cell lung cancer (NSCLC), a lot of patients would develop brain metastasis (BM) associated with the poor prognosis and high rate of mortality. However, there have been few models to predict early death (ED) from NSCLC patients with BM. We aimed to develop nomograms to predict ED in NSCLC patients with BM.The NSCLC patients with BM between 2010 and 2015 were selected from the Surveillance, Epidemiology, and End Result (SEER) database. Our inclusion criteria were as follows: (I) patients were pathologically diagnosed as NSCLC; (II) patients who suffered from BM. The patients were randomly divided into 2 cohorts at the ratio of 7:3, for training and validation cohorts, respectively. The univariate and multivariate logistic regression methods were managed to identify risk factors for ED in NSCLC patients with BM. Two nomograms were established and validated by calibration curves, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA). The follow-up data included survival months, causes of death, vital status. Death that occurred within 3 months of initial diagnosis is defined as ED and the endpoints were all-cause ED and cancer-specific ED.A total of 4,920 NSCLC patients with BM were included and randomly divided into 2 cohorts (7:3), including the training (n=3,444) and validation (n=1,476) cohorts. The independent prognostic factors for all-cause ED and cancer-specific ED included age, sex, race, tumor size, histology, T stage, N stage, grade, surgical operation, radiotherapy, chemotherapy, bone metastasis, and liver metastasis. All these variables were used to establish the nomograms. In the nomograms of all-cause and cancer-specific ED, the areas under the ROC curves were 0.813 (95% CI: 0.799-0.837) and 0.808 (95% CI: 0.791-0.830) for the training dataset as well as 0.835 (95% CI: 0.805-0.862) and 0.824 (95% CI: 0.790-0.849) for the validation dataset, respectively. Besides, the calibration curves proved that the predicted ED was consistent with the actual value. DCA suggested a good clinical application.The nomograms can be used to predict the specific probability of a patient's death, which aids in treatment decisions and focused care, as well as in physician-patient communication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛X完成签到,获得积分10
1秒前
daydayup完成签到,获得积分10
1秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
大模型应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
小二郎应助郝宝真采纳,获得10
3秒前
科研通AI2S应助hnlgdx采纳,获得10
5秒前
星辰大海应助霸气雪珍采纳,获得10
5秒前
daydayup发布了新的文献求助10
7秒前
10秒前
戴衡霞完成签到,获得积分10
11秒前
oceanao应助卜念采纳,获得10
12秒前
12秒前
16秒前
汉堡包应助Katherine采纳,获得10
16秒前
zkwww完成签到 ,获得积分10
16秒前
17秒前
喜悦的皮卡丘完成签到,获得积分10
18秒前
谦让的青亦完成签到,获得积分10
18秒前
追寻的山晴应助有点小帅采纳,获得10
18秒前
ne关注了科研通微信公众号
22秒前
zzt完成签到,获得积分10
23秒前
Ava应助麻辣小龙虾采纳,获得10
25秒前
estate完成签到,获得积分10
26秒前
情怀应助高发采纳,获得10
27秒前
卷心菜投手完成签到,获得积分10
29秒前
无限的妙芙完成签到,获得积分10
29秒前
123~!完成签到,获得积分10
30秒前
是然宝啊完成签到,获得积分10
31秒前
33秒前
Casper完成签到,获得积分10
34秒前
35秒前
HDD发布了新的文献求助10
37秒前
vivianzzz完成签到,获得积分10
37秒前
43秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162987
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902734
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187