On the Sensitivity of Bevelled and Conical Coaxial Needle Probes for Dielectric Spectroscopy

锥面 同轴 斜面 灵敏度(控制系统) 光学 介电常数 声学 材料科学 光圈(计算机存储器) 电介质 物理 电子工程 工程类 电气工程 光电子学 机械工程 复合材料
作者
Hossein Asilian Bidgoli,Nicola Schieda,Carlos Rossa
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tim.2023.3265116
摘要

Dielectric spectroscopy measures the permittivity of a material in a wide frequency band for analysis and characterisation with many applications in biomedical engineering. It is typically performed by measuring the reflection coefficient of the material under test using an open flat-ended coaxial probe. However, probes with a flat end cannot cut through biological tissues and thus, can only be deployed for ex-vivo measurements. Bevelled and conical-ended coaxial probes can overcome this limitation as they can be integrated into existing surgical tools for in-vivo measurements. The geometry of the probe strongly affects the measurement accuracy and this effect must be modelled precisely before deployment. Although there has been significant research using flat-ended probes, there is very limited research investigating other probe geometries. In this paper, a closed-form model of a bevelled and a conical end coaxial probe is presented for the first time. The model is based on the analytical solution of aperture admittance. The accuracy of the model is validated using both simulation and experimental results with a relative error of less than 1% for a wide range of permittivity values and frequencies. Using the obtained model, the sensitivity of conical and bevelled probes is analysed and compared. The results indicate that bevelled probes have a higher sensitivity than conical probes for tissue measurement and thus are the preferable probe geometry for in-vivo deployment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
Deathroid完成签到,获得积分10
1秒前
时荒发布了新的文献求助10
1秒前
小米完成签到,获得积分10
1秒前
2秒前
灵巧的斓完成签到,获得积分10
2秒前
3秒前
Aryac完成签到,获得积分10
4秒前
4秒前
科研通AI2S应助Ma采纳,获得10
4秒前
遲悟篤行完成签到,获得积分10
5秒前
尹雪儿完成签到,获得积分10
5秒前
充电宝应助qq采纳,获得10
6秒前
AhhHuang应助容若采纳,获得10
7秒前
7秒前
科目三应助炙热的平灵采纳,获得10
7秒前
liuanqi发布了新的文献求助10
7秒前
8秒前
8秒前
科研通AI6应助文乐采纳,获得10
8秒前
安安安完成签到,获得积分10
9秒前
9秒前
Unicorn发布了新的文献求助10
9秒前
斯文败类应助清浅采纳,获得30
9秒前
9秒前
小二郎应助yyj采纳,获得10
10秒前
Aryac发布了新的文献求助10
10秒前
10秒前
11秒前
Pothos应助YAN采纳,获得30
12秒前
gzhoax应助山山而川采纳,获得30
12秒前
科研通AI6应助liam采纳,获得10
12秒前
烟里戏发布了新的文献求助10
12秒前
沙糖桔完成签到,获得积分10
12秒前
13秒前
Sunday给Sunday的求助进行了留言
13秒前
13秒前
ppy发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667262
求助须知:如何正确求助?哪些是违规求助? 4884975
关于积分的说明 15119469
捐赠科研通 4826112
什么是DOI,文献DOI怎么找? 2583765
邀请新用户注册赠送积分活动 1537901
关于科研通互助平台的介绍 1496041