亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A smart predict-then-optimize method for targeted and cost-effective maritime transportation

计算机科学 运输工程 运筹学 工程类
作者
Xuecheng Tian,Ran Yan,Yannick Liu,Shuaian Wang
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:172: 32-52 被引量:35
标识
DOI:10.1016/j.trb.2023.03.009
摘要

In maritime transportation, port state control (PSC) is the last line of defense against substandard ships. During a PSC inspection, PSC officers (PSCOs) identify ship deficiencies that lead to a ship's detention, which can cause severe economic and reputational losses to the ship operator. Therefore, this study innovatively uses PSC inspection data to design ship maintenance plans for ship operators to minimize overall operational costs. We identify three types of operational costs associated with each deficiency code: inspection cost, repair cost, and risk cost in the ship operators’ decision-making process. The risk cost of a deficiency code is strongly related to the detention contribution of the deficiency items under a deficiency code, as indicated by the feature importance of that code in the random forest (RF) model used to predict detention outcomes. To design ship maintenance plans, the sequential predict-then-optimize (PO) method typically solves the optimization problem using input parameters, including the predicted probabilities of having deficiency items under each code and the three types of operational costs. However, the loss function in this two-stage framework does not consider the effect of predictions on the downstream decisions. Hence, we use a smart predict-then-optimize (SPO) method using an ensemble of SPO trees (SPOTs). Each SPOT uses an SPO loss function that measures the sub-optimality of the decisions derived from the predicted parameters. By exploiting the structural properties of the optimization problem analyzed in this study, we demonstrate that training an SPOT for this problem can be simplified tremendously by using the relative class frequency of true labels within a leaf node to yield a minimum SPO loss. Computational experiments show that the SPO-based ship maintenance scheme is superior to other schemes and can reduce a ship's total operating expenses by approximately 1% over the PO-based scheme and by at least 3% over schemes that do not use machine learning methods. In the long run, SPO-based ship maintenance plans also improve the efficiency of port logistics by reducing the resources needed for formal PSC inspections and alleviating port congestion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Linson完成签到,获得积分10
4秒前
Rewi_Zhang完成签到,获得积分10
6秒前
7秒前
Milton_z完成签到 ,获得积分10
9秒前
12秒前
meng发布了新的文献求助10
12秒前
13秒前
阳光沛凝发布了新的文献求助10
14秒前
Kevin完成签到,获得积分10
15秒前
15秒前
哈瑞快跑发布了新的文献求助10
16秒前
17秒前
DamenS发布了新的文献求助10
18秒前
18秒前
23秒前
蒋时晏应助Kevin采纳,获得30
23秒前
哈瑞快跑完成签到,获得积分10
23秒前
stargazer完成签到,获得积分10
28秒前
Yam呀完成签到 ,获得积分10
28秒前
华东少年完成签到,获得积分10
37秒前
NexusExplorer应助阳光沛凝采纳,获得10
38秒前
归海浩阑完成签到,获得积分10
42秒前
LLL发布了新的文献求助20
46秒前
熊猫弟弟完成签到 ,获得积分10
53秒前
蔡从安完成签到,获得积分20
53秒前
54秒前
58秒前
59秒前
崔帅完成签到,获得积分20
1分钟前
Hello应助LLL采纳,获得10
1分钟前
1分钟前
LuoYR@SZU完成签到,获得积分10
1分钟前
yyq应助大鲟采纳,获得10
1分钟前
1分钟前
niuya发布了新的文献求助30
1分钟前
1分钟前
爆米花应助科研通管家采纳,获得30
1分钟前
西南楚留香完成签到,获得积分10
1分钟前
桐桐应助DW采纳,获得10
1分钟前
T9的梦应助崔帅采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353438
求助须知:如何正确求助?哪些是违规求助? 2978055
关于积分的说明 8683528
捐赠科研通 2659377
什么是DOI,文献DOI怎么找? 1456236
科研通“疑难数据库(出版商)”最低求助积分说明 674302
邀请新用户注册赠送积分活动 665016