A smart predict-then-optimize method for targeted and cost-effective maritime transportation

计算机科学 运输工程 运筹学 工程类
作者
Xuecheng Tian,Ran Yan,Yannick Liu,Shuaian Wang
出处
期刊:Transportation Research Part B-methodological [Elsevier BV]
卷期号:172: 32-52 被引量:35
标识
DOI:10.1016/j.trb.2023.03.009
摘要

In maritime transportation, port state control (PSC) is the last line of defense against substandard ships. During a PSC inspection, PSC officers (PSCOs) identify ship deficiencies that lead to a ship's detention, which can cause severe economic and reputational losses to the ship operator. Therefore, this study innovatively uses PSC inspection data to design ship maintenance plans for ship operators to minimize overall operational costs. We identify three types of operational costs associated with each deficiency code: inspection cost, repair cost, and risk cost in the ship operators’ decision-making process. The risk cost of a deficiency code is strongly related to the detention contribution of the deficiency items under a deficiency code, as indicated by the feature importance of that code in the random forest (RF) model used to predict detention outcomes. To design ship maintenance plans, the sequential predict-then-optimize (PO) method typically solves the optimization problem using input parameters, including the predicted probabilities of having deficiency items under each code and the three types of operational costs. However, the loss function in this two-stage framework does not consider the effect of predictions on the downstream decisions. Hence, we use a smart predict-then-optimize (SPO) method using an ensemble of SPO trees (SPOTs). Each SPOT uses an SPO loss function that measures the sub-optimality of the decisions derived from the predicted parameters. By exploiting the structural properties of the optimization problem analyzed in this study, we demonstrate that training an SPOT for this problem can be simplified tremendously by using the relative class frequency of true labels within a leaf node to yield a minimum SPO loss. Computational experiments show that the SPO-based ship maintenance scheme is superior to other schemes and can reduce a ship's total operating expenses by approximately 1% over the PO-based scheme and by at least 3% over schemes that do not use machine learning methods. In the long run, SPO-based ship maintenance plans also improve the efficiency of port logistics by reducing the resources needed for formal PSC inspections and alleviating port congestion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助聪慧代芹采纳,获得10
刚刚
陈明宇完成签到,获得积分10
1秒前
YYY完成签到,获得积分10
1秒前
一多完成签到 ,获得积分20
1秒前
MHK完成签到,获得积分10
1秒前
舍得完成签到,获得积分10
1秒前
2秒前
Tammy完成签到 ,获得积分10
2秒前
Hello~完成签到,获得积分10
2秒前
2秒前
tent01完成签到,获得积分10
2秒前
科目三应助尹小末采纳,获得10
2秒前
3秒前
贪玩丸子完成签到,获得积分10
3秒前
1661321476完成签到,获得积分10
3秒前
Reef完成签到,获得积分10
3秒前
魏骜琦完成签到,获得积分10
4秒前
无花果应助iwww采纳,获得10
4秒前
张思琪完成签到,获得积分10
4秒前
4秒前
CipherSage应助无心的星月采纳,获得10
4秒前
Han完成签到,获得积分10
5秒前
猫好好完成签到,获得积分10
5秒前
廉不可发布了新的文献求助10
6秒前
Eureka完成签到 ,获得积分10
7秒前
8秒前
蔚蔚蓝天完成签到,获得积分10
8秒前
追寻依风完成签到,获得积分10
8秒前
8秒前
ddsyg126完成签到,获得积分10
8秒前
有魅力的从凝完成签到,获得积分10
8秒前
史呆芬发布了新的文献求助10
8秒前
欣慰的白羊完成签到,获得积分10
9秒前
9秒前
10秒前
煎饼煎饼完成签到,获得积分10
10秒前
淡然觅荷完成签到 ,获得积分10
10秒前
jack1511完成签到,获得积分10
10秒前
庄怀逸完成签到 ,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044