TPBTE: A model based on convolutional Transformer for predicting the binding of TCR to epitope

表位 T细胞受体 计算生物学 计算机科学 生物 抗原 T细胞 遗传学 免疫系统
作者
Jie Wu,Qi Meng,Feiyan Zhang,Yuanjie Zheng
出处
期刊:Molecular Immunology [Elsevier BV]
卷期号:157: 30-41 被引量:1
标识
DOI:10.1016/j.molimm.2023.03.010
摘要

T cell receptors (TCRs) selectively bind to antigens to fight pathogens with specific immunity. Current tools focus on the nature of amino acids within sequences and take less into account the nature of amino acids far apart and the relationship between sequences, leading to significant differences in the results from different datasets. We propose TPBTE, a model based on convolutional Transformer for Predicting the Binding of TCR to Epitope. It takes epitope sequences and the complementary decision region 3 (CDR3) sequences of TCRβ chain as inputs. And it uses a convolutional attention mechanism to learn amino acid representations between different positions of the sequences based on learning local features of the sequences. At the same time, it uses cross attention to learn the interaction information between TCR sequences and epitope sequences. A comprehensive evaluation of the TCR-epitope data shows that the average area under the curve of TPBTE outperforms the baseline model, and demonstrate an intentional performance. In addition, TPBTE can give the probability of binding TCR to epitopes, which can be used as the first step of epitope screening, narrowing the scope of epitope search and reducing the time of epitope search.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜芾完成签到,获得积分10
1秒前
共享精神应助三又一十八采纳,获得10
1秒前
Mycee完成签到 ,获得积分10
2秒前
GJL完成签到,获得积分20
2秒前
小十七果发布了新的文献求助10
2秒前
TTw完成签到,获得积分10
2秒前
赵亚男关注了科研通微信公众号
2秒前
3秒前
3秒前
Dding完成签到,获得积分10
4秒前
1514536hhh发布了新的文献求助30
4秒前
清爽绣连发布了新的文献求助30
4秒前
boyue完成签到,获得积分10
4秒前
wanci应助bofu采纳,获得10
5秒前
lightsyang完成签到,获得积分10
7秒前
7秒前
8秒前
fan发布了新的文献求助10
8秒前
魔幻友菱完成签到 ,获得积分10
9秒前
9秒前
9秒前
yx_cheng应助英俊绿柏采纳,获得20
9秒前
10秒前
11秒前
11秒前
桐桐应助yyy采纳,获得10
11秒前
wu8577应助bofu采纳,获得10
12秒前
司空豁发布了新的文献求助20
12秒前
qian72133完成签到,获得积分10
13秒前
李健应助科研小扒菜采纳,获得10
13秒前
13秒前
13秒前
212发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
1514536hhh完成签到,获得积分20
15秒前
路漫漫123完成签到,获得积分10
15秒前
plant发布了新的文献求助10
15秒前
16秒前
H15120375984发布了新的文献求助10
17秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956302
求助须知:如何正确求助?哪些是违规求助? 3502493
关于积分的说明 11108085
捐赠科研通 3233179
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870515
科研通“疑难数据库(出版商)”最低求助积分说明 802105