Geographically weighted regression based on a network weight matrix: a case study using urbanization driving force data in China

地理信息系统 计算机科学 数据挖掘 人口 地理 统计 数学 地图学 人口学 社会学
作者
Jingyi He,Ye Wei,Bailang Yu
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:37 (6): 1209-1235 被引量:25
标识
DOI:10.1080/13658816.2023.2192122
摘要

AbstractGeographically weighted regression (GWR) is a classical modeling method for dealing with spatial non-stationarity. It incorporates the distance decay effect in space to fit local regression models, where distance is defined as Euclidean distance. Although this definition has been expanded, it remains focused on physical distance. However, in the era of globalization and informatization, where the phenomenon of remotely close association is common, physical distance may not reflect real spatial proximity, and GWR based on physical distance has clear limitations. This paper proposes a geographically weighted regression based on a network weight matrix (NWM GWR) model. This does not rely on geographical location modeling; instead, it uses network distance to measure the proximity between two regions and weights observations by improving the kernel function to achieve distance attenuation. We adopt the population mobility network to establish a network weight matrix, modeling China's urbanization and its multidimensional driving factors using network autocorrelation and NWM GWR methods. Results show that the NWM GWR model has more accurate fit and better stability than ordinary least squares and GWR models, and better reveals relationships between variables, which makes it suitable for modeling economic and social systems more broadly.Keywords: Network weight matrixgeographically weighted regressionnetwork distancespatial non-stationarityordinary least squares Author contributionsJingyi He: methodological design, technical implementation, writing – original draft; Ye Wei: conceptual and methodological design, writing – review & editing, Supervision; Bailang Yu: writing – review & editing, validation.Disclosure statementNo potential conflict of interest was reported by the author(s).Data and codes availability statementData and codes used in the study are available at https://doi.org/10.6084/m9.figshare.21299253.v4.Additional informationFundingThis work is supported by National Natural Science Foundation of China [No. 41971202].Notes on contributorsJingyi HeJingyi He is currently pursuing a doctorate in Urban and regional planning of Northeast Normal University, Changchun 130024, China. Her current research interest focuses on application of complex network and GIS in urban research.Ye WeiYe Wei is Professor of School of Geographic Sciences, Northeast Normal University, Changchun 130024, China. His research interests include urban and regional planning and GIS application.Bailang YuBailang Yu is Professor of Key Lab of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China. His research interests include urban remote sensing, nighttime light remote sensing, LiDAR, and object-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雨沐风发布了新的文献求助10
1秒前
Liu完成签到 ,获得积分10
3秒前
科研通AI2S应助shang采纳,获得10
4秒前
金小豪发布了新的文献求助10
4秒前
brian0326发布了新的文献求助10
4秒前
5秒前
7秒前
8秒前
jaewoo发布了新的文献求助10
8秒前
七七完成签到,获得积分10
8秒前
8秒前
无足鸟完成签到,获得积分10
9秒前
9秒前
羞涩的煎饼完成签到,获得积分10
10秒前
梧桐完成签到,获得积分10
10秒前
ddd发布了新的文献求助10
11秒前
东桑末榆完成签到 ,获得积分10
11秒前
12秒前
小余同学发布了新的文献求助10
13秒前
共享精神应助ASen采纳,获得20
14秒前
任性的睫毛完成签到,获得积分10
14秒前
sunhhhh完成签到 ,获得积分10
14秒前
xxttt发布了新的文献求助10
15秒前
16秒前
19秒前
FashionBoy应助金小豪采纳,获得10
19秒前
20秒前
20秒前
我是老大应助ddd采纳,获得10
21秒前
22秒前
kss发布了新的文献求助10
22秒前
24秒前
cnkly完成签到,获得积分10
25秒前
水上汀州完成签到 ,获得积分10
26秒前
XI完成签到,获得积分10
27秒前
雨沐风完成签到,获得积分10
28秒前
29秒前
LJH关注了科研通微信公众号
29秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287984
求助须知:如何正确求助?哪些是违规求助? 4440026
关于积分的说明 13823687
捐赠科研通 4322271
什么是DOI,文献DOI怎么找? 2372462
邀请新用户注册赠送积分活动 1367928
关于科研通互助平台的介绍 1331548