Geographically weighted regression based on a network weight matrix: a case study using urbanization driving force data in China

地理信息系统 计算机科学 数据挖掘 人口 地理 统计 数学 地图学 人口学 社会学
作者
Jingyi He,Ye Wei,Bailang Yu
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:37 (6): 1209-1235 被引量:12
标识
DOI:10.1080/13658816.2023.2192122
摘要

AbstractGeographically weighted regression (GWR) is a classical modeling method for dealing with spatial non-stationarity. It incorporates the distance decay effect in space to fit local regression models, where distance is defined as Euclidean distance. Although this definition has been expanded, it remains focused on physical distance. However, in the era of globalization and informatization, where the phenomenon of remotely close association is common, physical distance may not reflect real spatial proximity, and GWR based on physical distance has clear limitations. This paper proposes a geographically weighted regression based on a network weight matrix (NWM GWR) model. This does not rely on geographical location modeling; instead, it uses network distance to measure the proximity between two regions and weights observations by improving the kernel function to achieve distance attenuation. We adopt the population mobility network to establish a network weight matrix, modeling China's urbanization and its multidimensional driving factors using network autocorrelation and NWM GWR methods. Results show that the NWM GWR model has more accurate fit and better stability than ordinary least squares and GWR models, and better reveals relationships between variables, which makes it suitable for modeling economic and social systems more broadly.Keywords: Network weight matrixgeographically weighted regressionnetwork distancespatial non-stationarityordinary least squares Author contributionsJingyi He: methodological design, technical implementation, writing – original draft; Ye Wei: conceptual and methodological design, writing – review & editing, Supervision; Bailang Yu: writing – review & editing, validation.Disclosure statementNo potential conflict of interest was reported by the author(s).Data and codes availability statementData and codes used in the study are available at https://doi.org/10.6084/m9.figshare.21299253.v4.Additional informationFundingThis work is supported by National Natural Science Foundation of China [No. 41971202].Notes on contributorsJingyi HeJingyi He is currently pursuing a doctorate in Urban and regional planning of Northeast Normal University, Changchun 130024, China. Her current research interest focuses on application of complex network and GIS in urban research.Ye WeiYe Wei is Professor of School of Geographic Sciences, Northeast Normal University, Changchun 130024, China. His research interests include urban and regional planning and GIS application.Bailang YuBailang Yu is Professor of Key Lab of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China. His research interests include urban remote sensing, nighttime light remote sensing, LiDAR, and object-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Liooo完成签到,获得积分10
2秒前
pluto应助愉快的真采纳,获得50
2秒前
qhy完成签到,获得积分10
2秒前
研友_Zlqx38完成签到,获得积分10
2秒前
qing完成签到,获得积分10
2秒前
贪玩书琴发布了新的文献求助10
3秒前
3秒前
4秒前
azure发布了新的文献求助20
4秒前
Gaminn发布了新的文献求助10
5秒前
5秒前
6秒前
酷波er应助成就的沛菡采纳,获得10
6秒前
Ada完成签到,获得积分10
7秒前
134完成签到,获得积分10
7秒前
冷静苑博完成签到,获得积分10
7秒前
桐桐应助宁琳采纳,获得10
8秒前
8秒前
iNk应助Ganlou采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
科研通AI2S应助hh0采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
幽默贞发布了新的文献求助10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
贪玩书琴完成签到,获得积分20
9秒前
9秒前
boom发布了新的文献求助10
9秒前
134发布了新的文献求助10
10秒前
月月发布了新的文献求助50
10秒前
via完成签到,获得积分10
10秒前
10秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245464
求助须知:如何正确求助?哪些是违规求助? 2889085
关于积分的说明 8256869
捐赠科研通 2557437
什么是DOI,文献DOI怎么找? 1386114
科研通“疑难数据库(出版商)”最低求助积分说明 650285
邀请新用户注册赠送积分活动 626541