Geographically weighted regression based on a network weight matrix: a case study using urbanization driving force data in China

地理信息系统 计算机科学 数据挖掘 人口 地理 统计 数学 地图学 社会学 人口学
作者
Jingyi He,Ye Wei,Bailang Yu
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:37 (6): 1209-1235 被引量:12
标识
DOI:10.1080/13658816.2023.2192122
摘要

AbstractGeographically weighted regression (GWR) is a classical modeling method for dealing with spatial non-stationarity. It incorporates the distance decay effect in space to fit local regression models, where distance is defined as Euclidean distance. Although this definition has been expanded, it remains focused on physical distance. However, in the era of globalization and informatization, where the phenomenon of remotely close association is common, physical distance may not reflect real spatial proximity, and GWR based on physical distance has clear limitations. This paper proposes a geographically weighted regression based on a network weight matrix (NWM GWR) model. This does not rely on geographical location modeling; instead, it uses network distance to measure the proximity between two regions and weights observations by improving the kernel function to achieve distance attenuation. We adopt the population mobility network to establish a network weight matrix, modeling China's urbanization and its multidimensional driving factors using network autocorrelation and NWM GWR methods. Results show that the NWM GWR model has more accurate fit and better stability than ordinary least squares and GWR models, and better reveals relationships between variables, which makes it suitable for modeling economic and social systems more broadly.Keywords: Network weight matrixgeographically weighted regressionnetwork distancespatial non-stationarityordinary least squares Author contributionsJingyi He: methodological design, technical implementation, writing – original draft; Ye Wei: conceptual and methodological design, writing – review & editing, Supervision; Bailang Yu: writing – review & editing, validation.Disclosure statementNo potential conflict of interest was reported by the author(s).Data and codes availability statementData and codes used in the study are available at https://doi.org/10.6084/m9.figshare.21299253.v4.Additional informationFundingThis work is supported by National Natural Science Foundation of China [No. 41971202].Notes on contributorsJingyi HeJingyi He is currently pursuing a doctorate in Urban and regional planning of Northeast Normal University, Changchun 130024, China. Her current research interest focuses on application of complex network and GIS in urban research.Ye WeiYe Wei is Professor of School of Geographic Sciences, Northeast Normal University, Changchun 130024, China. His research interests include urban and regional planning and GIS application.Bailang YuBailang Yu is Professor of Key Lab of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China. His research interests include urban remote sensing, nighttime light remote sensing, LiDAR, and object-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
米九完成签到,获得积分10
4秒前
zhao完成签到,获得积分10
7秒前
普鲁卡因发布了新的文献求助10
7秒前
zj完成签到,获得积分10
13秒前
蓝橙完成签到,获得积分10
14秒前
18秒前
GD88完成签到,获得积分10
19秒前
糟糕的梨愁完成签到,获得积分10
20秒前
莫西莫西完成签到 ,获得积分10
21秒前
小趴蔡完成签到 ,获得积分10
23秒前
唐唐发布了新的文献求助10
23秒前
飘逸剑身完成签到,获得积分10
26秒前
airtermis完成签到 ,获得积分10
26秒前
gfasdjsjdsjd完成签到,获得积分10
27秒前
27秒前
杨宁完成签到 ,获得积分10
27秒前
MchemG应助transition采纳,获得20
28秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
lxy发布了新的文献求助10
31秒前
gfasdjsjdsjd发布了新的文献求助10
32秒前
JCao727完成签到,获得积分10
32秒前
32秒前
33秒前
OAHCIL完成签到 ,获得积分10
34秒前
lixueao发布了新的文献求助10
35秒前
无辜的行云完成签到 ,获得积分0
38秒前
FIN应助gfasdjsjdsjd采纳,获得20
40秒前
今后应助gfasdjsjdsjd采纳,获得10
40秒前
排骨炖豆角完成签到 ,获得积分10
42秒前
一叶知秋应助大橙子采纳,获得10
44秒前
kk完成签到,获得积分10
47秒前
敏感春天完成签到,获得积分10
47秒前
凶狠的期待完成签到,获得积分10
49秒前
自然函发布了新的文献求助30
49秒前
JF123_完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
50秒前
52秒前
杨召发布了新的文献求助10
53秒前
didi完成签到,获得积分10
53秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022