Ubiquitous Gait Analysis through Footstep-Induced Floor Vibrations

步态 步态分析 振动 计算机科学 物理医学与康复 工程类 声学 人机交互 物理 医学
作者
Yang Dong,Hae Young Noh
出处
期刊:Sensors [MDPI AG]
卷期号:24 (8): 2496-2496
标识
DOI:10.3390/s24082496
摘要

Quantitative analysis of human gait is critical for the early discovery, progressive tracking, and rehabilitation of neurological and musculoskeletal disorders, such as Parkinson's disease, stroke, and cerebral palsy. Gait analysis typically involves estimating gait characteristics, such as spatiotemporal gait parameters and gait health indicators (e.g., step time, length, symmetry, and balance). Traditional methods of gait analysis involve the use of cameras, wearables, and force plates but are limited in operational requirements when applied in daily life, such as direct line-of-sight, carrying devices, and dense deployment. This paper introduces a novel approach for gait analysis by passively sensing floor vibrations generated by human footsteps using vibration sensors mounted on the floor surface. Our approach is low-cost, non-intrusive, and perceived as privacy-friendly, making it suitable for continuous gait health monitoring in daily life. Our algorithm estimates various gait parameters that are used as standard metrics in medical practices, including temporal parameters (step time, stride time, stance time, swing time, double-support time, and single-support time), spatial parameters (step length, width, angle, and stride length), and extracts gait health indicators (cadence/walking speed, left-right symmetry, gait balance, and initial contact types). The main challenge we addressed in this paper is the effect of different floor types on the resultant vibrations. We develop floor-adaptive algorithms to extract features that are generalizable to various practical settings, including homes, hospitals, and eldercare facilities. We evaluate our approach through real-world walking experiments with 20 adults with 12,231 labeled gait cycles across concrete and wooden floors. Our results show 90.5% (RMSE 0.08s), 71.3% (RMSE 0.38m), and 92.3% (RMSPE 7.7%) accuracy in estimating temporal, spatial parameters, and gait health indicators, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助清爽太阳采纳,获得10
刚刚
搜集达人应助哒哒哒宰采纳,获得30
刚刚
刚刚
小红完成签到,获得积分10
2秒前
2秒前
好运藏在善良里应助grzzz采纳,获得10
3秒前
zzz发布了新的文献求助10
3秒前
科研通AI5应助李佳慧采纳,获得10
4秒前
仙人掌发布了新的文献求助10
4秒前
1GE完成签到,获得积分10
5秒前
坩埚甘茶白完成签到 ,获得积分10
5秒前
我耀文章完成签到,获得积分20
5秒前
听闻发布了新的文献求助10
5秒前
科研通AI5应助刘仁轨采纳,获得10
6秒前
大模型应助安屿采纳,获得10
6秒前
淡然醉冬完成签到,获得积分10
6秒前
wxy发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
xj完成签到,获得积分10
7秒前
枫华完成签到,获得积分10
8秒前
英俊的铭应助顺心的书包采纳,获得10
8秒前
Yey完成签到 ,获得积分10
8秒前
LLLLLLLL完成签到,获得积分10
8秒前
8秒前
9秒前
orixero应助TZ采纳,获得10
9秒前
大可完成签到,获得积分10
10秒前
ding应助zzz采纳,获得10
10秒前
共享精神应助向雨竹采纳,获得10
10秒前
李爱国应助wzn采纳,获得10
10秒前
xj发布了新的文献求助10
10秒前
11秒前
Stanley完成签到,获得积分10
12秒前
qwqe发布了新的文献求助30
12秒前
12秒前
jeep先生发布了新的文献求助30
12秒前
13秒前
在水一方应助我耀文章采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3547087
求助须知:如何正确求助?哪些是违规求助? 3124191
关于积分的说明 9358008
捐赠科研通 2822719
什么是DOI,文献DOI怎么找? 1551643
邀请新用户注册赠送积分活动 723580
科研通“疑难数据库(出版商)”最低求助积分说明 713825