锑
硫化物
对苯二酚
热解
检出限
循环伏安法
儿茶酚
核化学
微分脉冲伏安法
电化学
化学
电化学气体传感器
自来水
三氧化二锑
无机化学
电极
有机化学
色谱法
物理化学
阻燃剂
环境工程
工程类
作者
Xiaoxu Jiang,Yue Yuan,Xiaomeng Zhao,Chunli Wan,Yutong Duan,Yuexi Zhou
标识
DOI:10.1016/j.envres.2024.118860
摘要
The application of antimony sulfide sensors, characterized by their exceptional stability and selectivity, is of emerging interest in detection research, and the integration of graphitized carbon materials is expected to further enhance their electrochemical performance. This study represents a pioneering effort in the synthesis of carbon-doped antimony sulfide materials through the pyrolysis of the mixture of microorganisms and their synthetic antimony sulfide. The prepared materials are subsequently applied to electrochemical sensors for monitoring the highly toxic compounds catechol (CC) and hydroquinone (HQ) in the environment. Via cyclic voltammetry (CV) and impedance testing, we concluded that the pyrolytic product at 700 °C (Sb-700) demonstrated the best electrochemical properties. Differential pulse voltammetry (DPV) revealed impressive separation when utilizing Sb-700/GCE for simultaneous detection of CC and HQ, exhibiting good linearity within the concentration range of 0.1–140 μM. The achieved sensitivities of 24.62 μA μM−1 cm−2 and 22.10 μA μM−1 cm−2 surpassed those of most CC and HQ electrochemical sensors. Meanwhile, the detection limits for CC and HQ were as low as 0.18 μM and 0.16 μM (S/N = 3), respectively. Additional tests confirmed the good selectivity, reproducibility, and long-term stability of Sb-700/GCE, which was effective in detecting CC and HQ in tap water and river water, with recovery rates of 100.7%–104.5% and 96.5%–101.4%, respectively. It provides a method that combines green microbial synthesis and simple pyrolysis for the preparation of electrode materials in CC and HQ electrochemical sensors, and also offers a new perspective for the application of microbial synthesized materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI