Machine learning for robust structural uncertainty quantification in fractured reservoirs

过度拟合 随机森林 回归 计算机科学 解算器 不确定度量化 机器学习 数学优化 数学 统计 人工神经网络
作者
Ali Dashti,Thilo Stadelmann,Thomas Köhl
出处
期刊:Geothermics [Elsevier BV]
卷期号:120: 103012-103012 被引量:1
标识
DOI:10.1016/j.geothermics.2024.103012
摘要

Including uncertainty is essential for accurate decision-making in underground applications. We propose a novel approach to consider structural uncertainty in two enhanced geothermal systems (EGSs) using machine learning (ML) models. The results of numerical simulations show that a small change in the structural model can cause a significant variation in the tracer breakthrough curves (BTCs). To develop a more robust method for including structural uncertainty, we train three different ML models: decision tree regression (DTR), random forest regression (RFR), and gradient boosting regression (GBR). DTR and RFR predict the entire BTC at once, but they are susceptible to overfitting and underfitting. In contrast, GBR predicts each time step of the BTC as a separate target variable, considering the possible correlation between consecutive time steps. This approach is implemented using a chain of regression models. The chain model achieves an acceptable increase in RMSE from train to test data, confirming its ability to capture both the general trend and small-scale heterogeneities of the BTCs. Additionally, using the ML model instead of the numerical solver reduces the computational time by six orders of magnitude. This time efficiency allows us to calculate BTCs for 2′000 different reservoir models, enabling a more comprehensive structural uncertainty quantification for EGS cases. The chain model is particularly promising, as it is robust to overfitting and underfitting and can generate BTCs for a large number of structural models efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zahra完成签到,获得积分10
1秒前
2秒前
wen完成签到,获得积分10
2秒前
2秒前
挽倾颜完成签到,获得积分10
3秒前
4秒前
所所应助DzongKha采纳,获得10
5秒前
8秒前
研友_LBorkn发布了新的文献求助10
9秒前
10秒前
张张包完成签到,获得积分10
10秒前
满意冷荷发布了新的文献求助10
12秒前
Ava应助luhan采纳,获得10
13秒前
14秒前
Owen应助Chuwei采纳,获得10
14秒前
15秒前
17秒前
20秒前
hxl完成签到,获得积分10
20秒前
prefectmi完成签到,获得积分10
20秒前
DzongKha发布了新的文献求助10
20秒前
所所应助我很厉害的采纳,获得10
21秒前
Marine发布了新的文献求助10
22秒前
22秒前
桐桐应助lxy采纳,获得10
24秒前
彤彤发布了新的文献求助10
26秒前
a3979107完成签到,获得积分10
27秒前
hxl发布了新的文献求助10
28秒前
樊尔风发布了新的文献求助10
28秒前
Chuwei发布了新的文献求助10
28秒前
研友_LBorkn完成签到,获得积分10
30秒前
31秒前
31秒前
31秒前
受伤宛菡完成签到,获得积分10
31秒前
32秒前
端庄谷南发布了新的文献求助10
34秒前
lxy发布了新的文献求助10
36秒前
归尘发布了新的文献求助10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669904
求助须知:如何正确求助?哪些是违规求助? 3227318
关于积分的说明 9775073
捐赠科研通 2937457
什么是DOI,文献DOI怎么找? 1609351
邀请新用户注册赠送积分活动 760256
科研通“疑难数据库(出版商)”最低求助积分说明 735765