Radiomics and quantitative multi-parametric MRI for predicting uterine fibroid growth

无线电技术 参数统计 子宫肌瘤 计算机科学 放射科 人工智能 医学 妇科 统计 数学
作者
Karen Drukker,Milica Medved,Carla Harmath,Maryellen L. Giger,Obianuju Sandra Madueke-Laveaux
标识
DOI:10.1117/12.3005190
摘要

Uterine fibroids (UFs) are benign tumors that vary in clinical presentation from asymptomatic to causing debilitating symptoms. UF management is limited by our inability to predict UF growth rate and future morbidity. This study aimed to develop a predictive model to identify UFs with increased growth rate and possible resultant morbidity. We retrospectively analyzed 44 expertly-outlined UFs from 21 patients who underwent two multi-parametric MR imaging exams as part of a prospective study over an average of 16 months. We identified 100 initial features by extracting quantitative MRI, morphological and textural radiomics features from DCE, T2, and ADC sequences. Principal component analysis reduced dimensionality, with the smallest number of components explaining over 97.5% of variance selected. Employing a leave-one-fibroid-out scheme, a linear discriminant analysis classifier utilized these components to output a growth risk score. The classifier incorporated the first six principal components and achieved an area under the ROC curve of 0.80 (95% CI [0.69; 0.91]), effectively distinguishing UFs growing faster than the median growth rate of 0.93 cm3/year/fibroid from slower-growing ones within the cohort. Time-to-event analysis, dividing the cohort based on the median growth risk score, yielded a hazard ratio of 0.33 [0.15; 0.76], demonstrating potential clinical utility. In conclusion, this pilot study developed a promising predictive model utilizing quantitative MRI features and principal component analysis to identify UFs with increased growth rate. Furthermore, the model's discrimination ability supports its potential clinical utility in developing tailored patient and fibroid specific management once validated on a larger cohort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪光喵喵完成签到,获得积分20
2秒前
4秒前
吃不起橘子了关注了科研通微信公众号
4秒前
名丿完成签到,获得积分10
5秒前
笨笨的元芹完成签到,获得积分10
7秒前
8秒前
9秒前
研友_VZG7GZ应助ys采纳,获得10
11秒前
11秒前
思源应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
1+1应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
木易心应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得30
13秒前
一一应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
ccm发布了新的文献求助10
14秒前
15秒前
16秒前
劲秉应助美味的薯片采纳,获得50
16秒前
深情安青应助鲲鹏采纳,获得10
16秒前
九月发布了新的文献求助100
17秒前
斯文败类应助RoyYoung采纳,获得10
17秒前
汉堡包应助阿飞采纳,获得10
18秒前
18秒前
小可乐完成签到,获得积分10
18秒前
yuhao_xu发布了新的文献求助20
19秒前
19秒前
20秒前
Lynnooii发布了新的文献求助30
20秒前
高分求助中
The body in description of emotion: cross-linguistic studies 1000
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212591
求助须知:如何正确求助?哪些是违规求助? 2861547
关于积分的说明 8129264
捐赠科研通 2527513
什么是DOI,文献DOI怎么找? 1361265
科研通“疑难数据库(出版商)”最低求助积分说明 643438
邀请新用户注册赠送积分活动 615776