Radiomics and quantitative multi-parametric MRI for predicting uterine fibroid growth

无线电技术 参数统计 子宫肌瘤 计算机科学 放射科 人工智能 医学 妇科 统计 数学
作者
Karen Drukker,Milica Medved,Carla Harmath,Maryellen L. Giger,Obianuju Sandra Madueke-Laveaux
标识
DOI:10.1117/12.3005190
摘要

Uterine fibroids (UFs) are benign tumors that vary in clinical presentation from asymptomatic to causing debilitating symptoms. UF management is limited by our inability to predict UF growth rate and future morbidity. This study aimed to develop a predictive model to identify UFs with increased growth rate and possible resultant morbidity. We retrospectively analyzed 44 expertly-outlined UFs from 21 patients who underwent two multi-parametric MR imaging exams as part of a prospective study over an average of 16 months. We identified 100 initial features by extracting quantitative MRI, morphological and textural radiomics features from DCE, T2, and ADC sequences. Principal component analysis reduced dimensionality, with the smallest number of components explaining over 97.5% of variance selected. Employing a leave-one-fibroid-out scheme, a linear discriminant analysis classifier utilized these components to output a growth risk score. The classifier incorporated the first six principal components and achieved an area under the ROC curve of 0.80 (95% CI [0.69; 0.91]), effectively distinguishing UFs growing faster than the median growth rate of 0.93 cm3/year/fibroid from slower-growing ones within the cohort. Time-to-event analysis, dividing the cohort based on the median growth risk score, yielded a hazard ratio of 0.33 [0.15; 0.76], demonstrating potential clinical utility. In conclusion, this pilot study developed a promising predictive model utilizing quantitative MRI features and principal component analysis to identify UFs with increased growth rate. Furthermore, the model's discrimination ability supports its potential clinical utility in developing tailored patient and fibroid specific management once validated on a larger cohort.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_ZAx4Gn发布了新的文献求助10
刚刚
刚刚
核潜艇很优秀应助tt采纳,获得10
刚刚
qweerrtt完成签到,获得积分10
1秒前
1秒前
liuxh123发布了新的文献求助30
1秒前
1秒前
花开富贵完成签到 ,获得积分10
1秒前
1秒前
519发布了新的文献求助10
2秒前
jiang完成签到 ,获得积分10
2秒前
开放念柏完成签到,获得积分10
2秒前
王先生完成签到,获得积分10
2秒前
刘成发布了新的文献求助30
3秒前
chen完成签到 ,获得积分20
3秒前
3秒前
科研通AI6应助soda采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
jam发布了新的文献求助10
3秒前
暮凝发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
青岩发布了新的文献求助10
5秒前
5秒前
悦耳听芹完成签到 ,获得积分10
5秒前
热心十三发布了新的文献求助150
5秒前
6秒前
时尚的大开完成签到 ,获得积分10
6秒前
旭058应助无私的冰双采纳,获得10
6秒前
科研通AI2S应助leekk采纳,获得10
6秒前
7秒前
galvin完成签到,获得积分10
8秒前
寒冷筝完成签到,获得积分10
8秒前
自由过客发布了新的文献求助10
8秒前
Guo99完成签到,获得积分10
8秒前
8秒前
西瓜头完成签到,获得积分10
8秒前
lcc发布了新的文献求助50
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645586
求助须知:如何正确求助?哪些是违规求助? 4769324
关于积分的说明 15030847
捐赠科研通 4804312
什么是DOI,文献DOI怎么找? 2568910
邀请新用户注册赠送积分活动 1526066
关于科研通互助平台的介绍 1485676