Progress in preparation, identification and photocatalytic application of defective g-C3N4

化学 光催化 鉴定(生物学) 纳米技术 环境化学 化学工程 天体生物学 催化作用 有机化学 生态学 生物 物理 工程类 材料科学
作者
Mengshan Chen,Mingyuzhi Sun,X. P. Cao,Haijian Wang,Xia Lü,Wulyu Jiang,Ming Huang,Li He,Xue Zhao,Yingtang Zhou
出处
期刊:Coordination Chemistry Reviews [Elsevier]
卷期号:510: 215849-215849 被引量:6
标识
DOI:10.1016/j.ccr.2024.215849
摘要

Graphitized carbon nitride (g-C3N4) has gained increasing prominence as a metal-free photocatalyst with a suitable bandgap. The limited absorption range of visible light and the fast complexation rate of photoexcited carriers of g-C3N4 hinder its photocatalytic activity. Fortunately, defect engineering of g-C3N4 can effectively enhance photogenerated electron migration. Therefore, optimizing the electronic structure and bandgap width by introducing vacancies can significantly improve the photocatalytic performance of g-C3N4. While the significance of defect engineering for enhancing the photocatalytic efficiency of g-C3N4 cannot be neglected, to date, there is a lack of comprehensive review articles including the applications of defective g-C3N4 in photocatalysis. In this review, we review the state of latest study on the preparation of defective g-C3N4 and systematically conclude the preparation strategies before, during, and after polymerization. Simultaneously, defective g-C3N4 photocatalysts were applied in denitrification, wastewater remediation, hydrogen production, CO2 conversion, disinfection, tumor treatment, and H2O2 generation are comprehensively discussed. Finally, we present the challenges associated with the specification of g-C3N4 photocatalysts based on vacancy defects and elemental doping, as well as the prospects for future developments in this particular field. This review has the potential to serve as a comprehensive theoretical framework and practicable guide to synthesize defective g-C3N4 photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liangkai完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
李健应助Joe采纳,获得10
3秒前
李健应助CatherineRR采纳,获得10
3秒前
cm发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
daiweiwei完成签到,获得积分10
5秒前
合适惋清发布了新的文献求助10
6秒前
krisda7发布了新的文献求助10
6秒前
6秒前
6秒前
尊敬雨灵完成签到,获得积分10
6秒前
7秒前
8秒前
njusdf发布了新的文献求助10
8秒前
8秒前
8秒前
彭于晏应助WUQINGHALASHAO采纳,获得10
8秒前
LWBlm1912_发布了新的文献求助10
8秒前
忧郁水彤完成签到,获得积分10
9秒前
杨大强完成签到 ,获得积分10
10秒前
行君瀛瑞完成签到 ,获得积分10
11秒前
Why完成签到,获得积分10
11秒前
SciGPT应助luckype采纳,获得10
11秒前
hh完成签到 ,获得积分10
12秒前
科目三应助顾北采纳,获得10
12秒前
yigemutouren发布了新的文献求助10
12秒前
谜湖发布了新的文献求助10
12秒前
12秒前
12秒前
一一发布了新的文献求助10
13秒前
14秒前
14秒前
cm发布了新的文献求助30
14秒前
爆米花应助宇麦达采纳,获得10
16秒前
林读书完成签到 ,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136000
求助须知:如何正确求助?哪些是违规求助? 2786769
关于积分的说明 7779614
捐赠科研通 2443019
什么是DOI,文献DOI怎么找? 1298798
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870