Pinhole Formation by Nucleation-Driven Phase Separation in TOPCon and POLO Solar Cells: Structural Dynamics and Optimization

针孔(光学) 成核 材料科学 相(物质) 动力学(音乐) 光学 化学 热力学 物理 有机化学 声学
作者
Andrew Diggs,Zachary Crawford,Adam Goga,Z.X. Zhao,Josua Stückelberger,Gergely T. Zimányi
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:7 (8): 3414-3423 被引量:1
标识
DOI:10.1021/acsaem.4c00171
摘要

SiOx/poly-Si passivating carrier-selective contacts are one of the most promising concepts for the next generation of high-efficiency silicon solar cells called TOPCon and POLO cells. Experiments found that their ultrathin SiOx layer may be susceptible to the formation of Si-rich pinholes. In TOPCon cells, these pinholes act as undesirable recombination centers, while POLO cells are designed with pinholes being crucial for their operation. Motivated by remarkable experimental results, in this paper, we report extensive molecular dynamics simulations of the structural dynamics of TOPCon stacks during the elevated temperature thermal treatments of the cell fabrication. In particular, we investigated the effects of hydrogen on the structural dynamics of the TOPCon stacks. Our main findings were the following. (1) Pinholes formed via nucleated phase separation already in the nonhydrogenated SiOx layer but only at higher, POLO-relevant temperatures. (2) The effect of hydrogen was distinctly different at low and at high concentrations. At low H concentration, hydrogen reduced the concentration of interface dangling bonds, which are well-known recombination centers. However, at high H concentration, hydrogen dramatically lowered the energy of the pinhole configurations and their nucleation barriers and thus induced the formation of pinholes. These proto-pinholes reversed the trend and increased the dangling bond concentration. (3) We found that pinhole formation was reversible: the extraction of hydrogen dissolved the pinholes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ENO_i发布了新的文献求助10
3秒前
5秒前
7秒前
8秒前
科研通AI5应助HJJHJH采纳,获得30
9秒前
wz完成签到,获得积分10
9秒前
13秒前
寻风完成签到,获得积分10
14秒前
劲秉应助Malone采纳,获得10
15秒前
111完成签到,获得积分10
19秒前
20秒前
20秒前
PP完成签到 ,获得积分10
21秒前
xzc完成签到 ,获得积分10
21秒前
25秒前
wxy完成签到,获得积分10
25秒前
28秒前
29秒前
SY完成签到,获得积分10
30秒前
RTena.完成签到,获得积分10
30秒前
陈峰琦发布了新的文献求助10
32秒前
du发布了新的文献求助10
32秒前
33秒前
34秒前
心灵美思卉完成签到,获得积分10
35秒前
38秒前
HJJHJH发布了新的文献求助30
39秒前
40秒前
科研通AI5应助陈峰琦采纳,获得10
41秒前
41秒前
微笑的天抒完成签到 ,获得积分10
46秒前
ty7889完成签到,获得积分10
46秒前
47秒前
yrh发布了新的文献求助10
47秒前
47秒前
50秒前
英俊的铭应助ty7889采纳,获得20
51秒前
科研通AI5应助HJJHJH采纳,获得50
55秒前
fire完成签到 ,获得积分10
57秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673288
求助须知:如何正确求助?哪些是违规求助? 3229110
关于积分的说明 9783896
捐赠科研通 2939628
什么是DOI,文献DOI怎么找? 1611172
邀请新用户注册赠送积分活动 760809
科研通“疑难数据库(出版商)”最低求助积分说明 736290