Multilingual Fake News Detection in Low-Resource Languages: A Comparative Study Using BERT and GPT-3.5

计算机科学 资源(消歧) 万维网 计算机网络
作者
K. Anirudh,M.K.Madialagan S.R.Srikanth,A. Shahina
出处
期刊:Communications in computer and information science 卷期号:: 387-397
标识
DOI:10.1007/978-3-031-58495-4_28
摘要

This paper presents a novel attempt at evaluating the authenticity of Tamil news headlines using large language models (LLMs) and evaluating it besides transformer models and existing machine learning results. To tackle this classification task, two potent models—the transformer-based BERT and the LLM, gpt-3.5-turbo—are deployed and fine-tuned to distinguish genuine from fabricated news headlines. Through careful fine-tuning and training of BERT, m-BERT, and GPT-3.5-Turbo, we assess their effectiveness, contrasting a bi-directional transformer with a generative transformer for fake news classification. Careful selection leads us to training based on three types of inputs: (1) Tamil news with English translations and author information; (2) Tamil news with author information only; and (3) English news with author information only. Our evaluation yields intriguing insights, showing that models trained on inputs with English versions consistently outperform those relying solely on Tamil text. Performance metrics, including accuracy, precision, recall, and F1-score, imply the superiority of the LLM -based gpt-3.5-turbo, achieving an accuracy of 0.92, precision of 0.902, recall of 0.949, and F1-score of 0.925. This highlights the effectiveness of LLMs in Tamil fake news classification. Moreover, these findings stress the significance of multilingual data processing for bolstering the accuracy of news headline classification systems. They also provide valuable insights for enhancing the reliability and precision of fake news detection systems in multilingual environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助满意的板凳采纳,获得10
刚刚
夺格发布了新的文献求助30
刚刚
777完成签到,获得积分10
2秒前
从容完成签到,获得积分20
2秒前
知性的宛完成签到 ,获得积分10
3秒前
我要发sci发布了新的文献求助10
4秒前
12完成签到,获得积分10
4秒前
6秒前
NexusExplorer应助yidezhang采纳,获得10
6秒前
7秒前
7秒前
华仔应助明亮寻绿采纳,获得10
7秒前
吉星高照应助陈瑶馨采纳,获得10
7秒前
小丁呀完成签到 ,获得积分20
7秒前
wxy发布了新的文献求助10
8秒前
Ava应助Suyx采纳,获得10
8秒前
合适板栗完成签到,获得积分10
8秒前
9秒前
Keats关注了科研通微信公众号
9秒前
英俊的铭应助杨涵采纳,获得10
9秒前
10秒前
11秒前
Demonmaster完成签到,获得积分10
11秒前
思源应助1111采纳,获得10
11秒前
777完成签到,获得积分10
12秒前
12秒前
13秒前
我要发sci完成签到,获得积分10
13秒前
13秒前
13秒前
yk完成签到 ,获得积分10
15秒前
15秒前
科研通AI6应助妮妮采纳,获得10
16秒前
16秒前
李莹发布了新的文献求助10
16秒前
小鱼儿发布了新的文献求助10
17秒前
K2L发布了新的文献求助10
17秒前
冷静寒风关注了科研通微信公众号
18秒前
LCX发布了新的文献求助10
19秒前
HongqiZhang完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287232
求助须知:如何正确求助?哪些是违规求助? 4439680
关于积分的说明 13822419
捐赠科研通 4321690
什么是DOI,文献DOI怎么找? 2372100
邀请新用户注册赠送积分活动 1367648
关于科研通互助平台的介绍 1331104