Multilingual Fake News Detection in Low-Resource Languages: A Comparative Study Using BERT and GPT-3.5

计算机科学 资源(消歧) 万维网 计算机网络
作者
K. Anirudh,M.K.Madialagan S.R.Srikanth,A. Shahina
出处
期刊:Communications in computer and information science 卷期号:: 387-397
标识
DOI:10.1007/978-3-031-58495-4_28
摘要

This paper presents a novel attempt at evaluating the authenticity of Tamil news headlines using large language models (LLMs) and evaluating it besides transformer models and existing machine learning results. To tackle this classification task, two potent models—the transformer-based BERT and the LLM, gpt-3.5-turbo—are deployed and fine-tuned to distinguish genuine from fabricated news headlines. Through careful fine-tuning and training of BERT, m-BERT, and GPT-3.5-Turbo, we assess their effectiveness, contrasting a bi-directional transformer with a generative transformer for fake news classification. Careful selection leads us to training based on three types of inputs: (1) Tamil news with English translations and author information; (2) Tamil news with author information only; and (3) English news with author information only. Our evaluation yields intriguing insights, showing that models trained on inputs with English versions consistently outperform those relying solely on Tamil text. Performance metrics, including accuracy, precision, recall, and F1-score, imply the superiority of the LLM -based gpt-3.5-turbo, achieving an accuracy of 0.92, precision of 0.902, recall of 0.949, and F1-score of 0.925. This highlights the effectiveness of LLMs in Tamil fake news classification. Moreover, these findings stress the significance of multilingual data processing for bolstering the accuracy of news headline classification systems. They also provide valuable insights for enhancing the reliability and precision of fake news detection systems in multilingual environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QI关注了科研通微信公众号
1秒前
英姑应助weijie采纳,获得10
1秒前
年年发布了新的文献求助10
1秒前
2秒前
852应助LLL采纳,获得10
2秒前
frl发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助冥月采纳,获得10
3秒前
所所应助孤独士晋采纳,获得10
3秒前
4秒前
echo发布了新的文献求助20
5秒前
7秒前
Victoria发布了新的文献求助10
7秒前
多情含灵发布了新的文献求助10
8秒前
慕青应助JackeyChen采纳,获得10
9秒前
小马甲应助忧虑的冰姬采纳,获得10
9秒前
9秒前
烟花应助123采纳,获得10
10秒前
cc完成签到,获得积分20
10秒前
10秒前
11秒前
AZUSA完成签到,获得积分20
12秒前
12秒前
在水一方应助猪猪院长采纳,获得10
12秒前
13秒前
朴素烧鹅发布了新的文献求助10
13秒前
superbada完成签到,获得积分10
14秒前
nanween完成签到,获得积分10
14秒前
zhaoyy发布了新的文献求助10
14秒前
14秒前
chang发布了新的文献求助10
16秒前
16秒前
16秒前
hhhi应助虚幻靖易采纳,获得10
17秒前
丘比特应助老武采纳,获得10
17秒前
18秒前
科目三应助frl采纳,获得10
18秒前
cookie完成签到,获得积分10
18秒前
畅快的天空完成签到,获得积分10
20秒前
bbanshan完成签到,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021