已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Emergent time scales of epistasis in protein evolution

上位性 进化生物学 生物 计算生物学 统计物理学 计量经济学 遗传学 数学 物理 基因
作者
Leonardo Di Bari,Matteo Bisardi,Sabrina Cotogno,Martin Weigt,Francesco Zamponi
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2403.09436
摘要

We introduce a data-driven epistatic model of protein evolution, capable of generating evolutionary trajectories spanning very different time scales reaching from individual mutations to diverged homologs. Our in silico evolution encompasses random nucleotide mutations, insertions and deletions, and models selection using a fitness landscape, which is inferred via a generative probabilistic model for protein families. We show that the proposed framework accurately reproduces the sequence statistics of both short-time (experimental) and long-time (natural) protein evolution, suggesting applicability also to relatively data-poor intermediate evolutionary time scales, which are currently inaccessible to evolution experiments. Our model uncovers a highly collective nature of epistasis, gradually changing the fitness effect of mutations in a diverging sequence context, rather than acting via strong interactions between individual mutations. This collective nature triggers the emergence of a long evolutionary time scale, separating fast mutational processes inside a given sequence context, from the slow evolution of the context itself. The model quantitatively reproduces the extent of contingency and entrenchment, as well as the loss of predictability in protein evolution observed in deep mutational scanning experiments of distant homologs. It thereby deepens our understanding of the interplay between mutation and selection in shaping protein diversity and novel functions, allows to statistically forecast evolution, and challenges the prevailing independent-site models of protein evolution, which are unable to capture the fundamental importance of epistasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yt完成签到 ,获得积分10
1秒前
1秒前
ferritin完成签到 ,获得积分10
3秒前
3秒前
7秒前
LR发布了新的文献求助10
9秒前
10秒前
绿柏完成签到,获得积分10
10秒前
陳.发布了新的文献求助10
11秒前
11秒前
努力的淼淼完成签到 ,获得积分10
11秒前
12秒前
Spike发布了新的文献求助10
12秒前
13秒前
15秒前
17秒前
田様应助LR采纳,获得10
18秒前
克泷完成签到 ,获得积分10
19秒前
浩whu完成签到,获得积分10
19秒前
20秒前
wanci应助baill采纳,获得10
22秒前
田様应助南余采纳,获得10
22秒前
清爽鼠标完成签到 ,获得积分10
22秒前
23秒前
24秒前
小袁完成签到 ,获得积分10
24秒前
随机波动应助dlfg采纳,获得20
24秒前
南国之霄发布了新的文献求助10
25秒前
26秒前
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
顾矜应助科研通管家采纳,获得10
27秒前
wanci应助科研通管家采纳,获得10
27秒前
今后应助科研通管家采纳,获得10
27秒前
Orange应助科研通管家采纳,获得10
28秒前
CodeCraft应助科研通管家采纳,获得10
28秒前
GingerF应助科研通管家采纳,获得50
28秒前
28秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090300
求助须知:如何正确求助?哪些是违规求助? 4304991
关于积分的说明 13415058
捐赠科研通 4130561
什么是DOI,文献DOI怎么找? 2262480
邀请新用户注册赠送积分活动 1266327
关于科研通互助平台的介绍 1201063