Emergent time scales of epistasis in protein evolution

上位性 进化生物学 生物 计算生物学 统计物理学 计量经济学 遗传学 数学 物理 基因
作者
Leonardo Di Bari,Matteo Bisardi,Sabrina Cotogno,Martin Weigt,Francesco Zamponi
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2403.09436
摘要

We introduce a data-driven epistatic model of protein evolution, capable of generating evolutionary trajectories spanning very different time scales reaching from individual mutations to diverged homologs. Our in silico evolution encompasses random nucleotide mutations, insertions and deletions, and models selection using a fitness landscape, which is inferred via a generative probabilistic model for protein families. We show that the proposed framework accurately reproduces the sequence statistics of both short-time (experimental) and long-time (natural) protein evolution, suggesting applicability also to relatively data-poor intermediate evolutionary time scales, which are currently inaccessible to evolution experiments. Our model uncovers a highly collective nature of epistasis, gradually changing the fitness effect of mutations in a diverging sequence context, rather than acting via strong interactions between individual mutations. This collective nature triggers the emergence of a long evolutionary time scale, separating fast mutational processes inside a given sequence context, from the slow evolution of the context itself. The model quantitatively reproduces the extent of contingency and entrenchment, as well as the loss of predictability in protein evolution observed in deep mutational scanning experiments of distant homologs. It thereby deepens our understanding of the interplay between mutation and selection in shaping protein diversity and novel functions, allows to statistically forecast evolution, and challenges the prevailing independent-site models of protein evolution, which are unable to capture the fundamental importance of epistasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
学习ing发布了新的文献求助10
3秒前
憨憨完成签到,获得积分10
3秒前
6秒前
云木完成签到 ,获得积分10
8秒前
9秒前
ZXH完成签到,获得积分10
10秒前
萝卜炖土豆完成签到,获得积分10
11秒前
尚忠富完成签到,获得积分10
13秒前
15秒前
尚忠富发布了新的文献求助10
18秒前
泡泡完成签到,获得积分10
19秒前
19秒前
Kk发布了新的文献求助30
22秒前
静谧180完成签到,获得积分10
22秒前
22秒前
24秒前
琉璃苣应助明明采纳,获得10
25秒前
静谧180发布了新的文献求助10
26秒前
小蘑菇应助gyhmybsy采纳,获得10
26秒前
整齐的泥猴桃完成签到 ,获得积分10
29秒前
PowerQ发布了新的文献求助10
30秒前
31秒前
21完成签到 ,获得积分10
33秒前
Adeline发布了新的文献求助30
34秒前
雨兔儿完成签到,获得积分10
34秒前
wqy发布了新的文献求助10
34秒前
36秒前
37秒前
经冰夏完成签到 ,获得积分10
38秒前
研友_VZG7GZ应助匿蝶采纳,获得10
39秒前
39秒前
souther完成签到,获得积分0
40秒前
Eric_Liuzy发布了新的文献求助10
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137575
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787428
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300110
科研通“疑难数据库(出版商)”最低求助积分说明 625813
版权声明 601023