参数化复杂度
对抗制
计算机科学
边界判定
生成语法
领域(数学分析)
投影(关系代数)
图像(数学)
比例(比率)
班级(哲学)
人工智能
边界(拓扑)
模式识别(心理学)
弹道
机器学习
数据挖掘
算法
数学
支持向量机
数学分析
物理
量子力学
天文
作者
Xiangyu Xiong,Yue Sun,Xiaohong Liu,Chan‐Tong Lam,Tong Tong,Hao Chen,Qinquan Gao,Wei Ke,Tao Tan
标识
DOI:10.1109/icassp48485.2024.10448260
摘要
Although current data augmentation methods are successful to alleviate the data insufficiency, conventional augmentation are primarily intra-domain while advanced generative adversarial networks (GANs) generate images remaining uncertain, particularly in small-scale datasets. In this paper, we propose a parameterized GAN (ParaGAN) that effectively controls the changes of synthetic samples among domains and highlights the attention regions for downstream classification. Specifically, ParaGAN incorporates projection distance parameters in cyclic projection and projects the source images to the decision boundary to obtain the class-difference maps. Our experiments show that ParaGAN can consistently outperform the existing augmentation methods with explainable classification on two small-scale medical datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI