亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification and Verification of Metabolism-related Immunotherapy Features and Prognosis in Lung Adenocarcinoma

列线图 比例危险模型 腺癌 单变量 肿瘤科 生存分析 生物 肺癌 基因签名 接收机工作特性 恶性肿瘤 基因 内科学 生物信息学 癌症 多元统计 医学 基因表达 遗传学 计算机科学 机器学习
作者
Junfang Luo,Jinlu An,Rongyan Jia,Cong Liu,Yang Zhang
出处
期刊:Current Medicinal Chemistry [Bentham Science]
卷期号:31 被引量:5
标识
DOI:10.2174/0109298673293414240314043529
摘要

Background: Lung cancer is a frequent malignancy with a poor prognosis. Extensive metabolic alterations are involved in carcinogenesis and could, therefore, serve as a reliable prognostic phenotype. Aims: Our study aimed to develop a prognosis signature and explore the relationship between metabolic characteristic-related signature and immune infiltration in lung adenocarcinoma (LUAD) Objective: TCGA-LUAD and GSE31210 datasets were used as a training set and a validation set, respectively. Method: A total of 513 LUAD samples collected from The Cancer Genome Atlas database (TCGA-LUAD) were used as a training dataset. Molecular subtypes were classified by consensus clustering, and prognostic genes related to metabolism were analyzed based on Differentially Expressed Genes (DEGs), Protein-Protein Interaction (PPI) network, the univariate/multivariate- and Lasso- Cox regression analysis. Results: Two molecular subtypes with significant survival differences were divided by the metabolism gene sets. The DEGs between the two subtypes were identified by integrated analysis and then used to develop an 8-gene signature (TTK, TOP2A, KIF15, DLGAP5, PLK1, PTTG1, ECT2, and ANLN) for predicting LUAD prognosis. Overexpression of the 8 genes was significantly correlated with worse prognostic outcomes. RiskScore was an independent factor that could divide LUAD patients into low- and high-risk groups. Specifically, high-risk patients had poorer prognoses and higher immune escape. The Receiver Operating Characteristic (ROC) curve showed strong performance of the RiskScore model in estimating 1-, 3- and 5-year survival in both training and validation sets. Finally, an optimized nomogram model was developed and contributed the most to the prognostic prediction in LUAD. Conclusion: The current model could help effectively identify high-risk patients and suggest the most effective drug and treatment candidates for patients with LUAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZJ完成签到,获得积分10
1秒前
机灵哈密瓜完成签到 ,获得积分10
2秒前
bible完成签到,获得积分10
4秒前
包破茧完成签到,获得积分0
5秒前
小二郎应助shining采纳,获得10
8秒前
18秒前
情怀应助Wu采纳,获得10
21秒前
123完成签到,获得积分10
21秒前
害羞的书芹完成签到,获得积分10
22秒前
22秒前
shining发布了新的文献求助10
23秒前
情怀应助vinss66home采纳,获得10
25秒前
Oculus完成签到 ,获得积分10
25秒前
Lemon发布了新的文献求助10
26秒前
roetfff发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
30秒前
儒雅的十八完成签到,获得积分10
31秒前
小马甲应助公西凝芙采纳,获得10
32秒前
Jack完成签到 ,获得积分10
35秒前
若宫伊芙完成签到,获得积分10
35秒前
shining完成签到,获得积分20
37秒前
年少丶完成签到,获得积分10
38秒前
浩瀚完成签到,获得积分10
40秒前
开心快乐水完成签到 ,获得积分10
40秒前
学不完了完成签到 ,获得积分10
40秒前
冷静的访天完成签到 ,获得积分10
46秒前
专注冰棍完成签到 ,获得积分10
50秒前
78888完成签到 ,获得积分10
51秒前
lmm完成签到 ,获得积分10
51秒前
51秒前
ZYP发布了新的文献求助10
54秒前
54秒前
Dylan完成签到 ,获得积分10
55秒前
CJY发布了新的文献求助10
56秒前
56秒前
佳佳发布了新的文献求助10
57秒前
神勇涵菡关注了科研通微信公众号
57秒前
58秒前
59秒前
Song完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639400
求助须知:如何正确求助?哪些是违规求助? 4748105
关于积分的说明 15006290
捐赠科研通 4797572
什么是DOI,文献DOI怎么找? 2563546
邀请新用户注册赠送积分活动 1522573
关于科研通互助平台的介绍 1482258