Identification and Verification of Metabolism-related Immunotherapy Features and Prognosis in Lung Adenocarcinoma

列线图 比例危险模型 腺癌 单变量 肿瘤科 生存分析 生物 肺癌 基因签名 接收机工作特性 恶性肿瘤 基因 内科学 生物信息学 癌症 多元统计 医学 基因表达 遗传学 计算机科学 机器学习
作者
Junfang Luo,Jinlu An,Rongyan Jia,Cong Liu,Yang Zhang
出处
期刊:Current Medicinal Chemistry [Bentham Science]
卷期号:31 被引量:5
标识
DOI:10.2174/0109298673293414240314043529
摘要

Background: Lung cancer is a frequent malignancy with a poor prognosis. Extensive metabolic alterations are involved in carcinogenesis and could, therefore, serve as a reliable prognostic phenotype. Aims: Our study aimed to develop a prognosis signature and explore the relationship between metabolic characteristic-related signature and immune infiltration in lung adenocarcinoma (LUAD) Objective: TCGA-LUAD and GSE31210 datasets were used as a training set and a validation set, respectively. Method: A total of 513 LUAD samples collected from The Cancer Genome Atlas database (TCGA-LUAD) were used as a training dataset. Molecular subtypes were classified by consensus clustering, and prognostic genes related to metabolism were analyzed based on Differentially Expressed Genes (DEGs), Protein-Protein Interaction (PPI) network, the univariate/multivariate- and Lasso- Cox regression analysis. Results: Two molecular subtypes with significant survival differences were divided by the metabolism gene sets. The DEGs between the two subtypes were identified by integrated analysis and then used to develop an 8-gene signature (TTK, TOP2A, KIF15, DLGAP5, PLK1, PTTG1, ECT2, and ANLN) for predicting LUAD prognosis. Overexpression of the 8 genes was significantly correlated with worse prognostic outcomes. RiskScore was an independent factor that could divide LUAD patients into low- and high-risk groups. Specifically, high-risk patients had poorer prognoses and higher immune escape. The Receiver Operating Characteristic (ROC) curve showed strong performance of the RiskScore model in estimating 1-, 3- and 5-year survival in both training and validation sets. Finally, an optimized nomogram model was developed and contributed the most to the prognostic prediction in LUAD. Conclusion: The current model could help effectively identify high-risk patients and suggest the most effective drug and treatment candidates for patients with LUAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白瑾完成签到,获得积分10
刚刚
1秒前
快乐板栗完成签到,获得积分10
1秒前
10711发布了新的文献求助10
1秒前
w王w发布了新的文献求助10
2秒前
2秒前
午盏发布了新的文献求助10
3秒前
Dr发布了新的文献求助10
3秒前
4秒前
科研通AI6应助sweet采纳,获得10
4秒前
李美兰完成签到 ,获得积分10
4秒前
4秒前
星光完成签到,获得积分10
5秒前
打打应助能干的雪瑶采纳,获得10
6秒前
6秒前
戴国瑜完成签到,获得积分10
7秒前
CodeCraft应助10711采纳,获得10
7秒前
gqfang完成签到,获得积分10
8秒前
8秒前
隐形曼青应助Dr采纳,获得10
8秒前
烟花应助陈陈采纳,获得10
9秒前
scriptloz发布了新的文献求助10
10秒前
浮游应助大凯采纳,获得10
11秒前
科研通AI2S应助Olivia采纳,获得10
11秒前
fujun0095发布了新的文献求助10
11秒前
12秒前
Ava应助光亮的代真采纳,获得10
15秒前
DDD完成签到,获得积分10
15秒前
15秒前
牛马研究生完成签到 ,获得积分10
16秒前
17秒前
小蘑菇应助新年采纳,获得10
17秒前
leo完成签到,获得积分10
20秒前
MeOH拿桶接发布了新的文献求助10
21秒前
默问应助Hello采纳,获得30
22秒前
22秒前
fujun0095完成签到,获得积分10
24秒前
sunlihao完成签到,获得积分10
24秒前
25秒前
CodeCraft应助Shelley采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642218
求助须知:如何正确求助?哪些是违规求助? 4758455
关于积分的说明 15016860
捐赠科研通 4800783
什么是DOI,文献DOI怎么找? 2566211
邀请新用户注册赠送积分活动 1524307
关于科研通互助平台的介绍 1483909