Identification and Verification of Metabolism-related Immunotherapy Features and Prognosis in Lung Adenocarcinoma

列线图 比例危险模型 腺癌 单变量 肿瘤科 生存分析 生物 肺癌 基因签名 接收机工作特性 恶性肿瘤 基因 内科学 生物信息学 癌症 多元统计 医学 基因表达 遗传学 计算机科学 机器学习
作者
Junfang Luo,Jinlu An,Rongyan Jia,Cong Liu,Yang Zhang
出处
期刊:Current Medicinal Chemistry [Bentham Science Publishers]
卷期号:31 被引量:4
标识
DOI:10.2174/0109298673293414240314043529
摘要

Background: Lung cancer is a frequent malignancy with a poor prognosis. Extensive metabolic alterations are involved in carcinogenesis and could, therefore, serve as a reliable prognostic phenotype. Aims: Our study aimed to develop a prognosis signature and explore the relationship between metabolic characteristic-related signature and immune infiltration in lung adenocarcinoma (LUAD) Objective: TCGA-LUAD and GSE31210 datasets were used as a training set and a validation set, respectively. Method: A total of 513 LUAD samples collected from The Cancer Genome Atlas database (TCGA-LUAD) were used as a training dataset. Molecular subtypes were classified by consensus clustering, and prognostic genes related to metabolism were analyzed based on Differentially Expressed Genes (DEGs), Protein-Protein Interaction (PPI) network, the univariate/multivariate- and Lasso- Cox regression analysis. Results: Two molecular subtypes with significant survival differences were divided by the metabolism gene sets. The DEGs between the two subtypes were identified by integrated analysis and then used to develop an 8-gene signature (TTK, TOP2A, KIF15, DLGAP5, PLK1, PTTG1, ECT2, and ANLN) for predicting LUAD prognosis. Overexpression of the 8 genes was significantly correlated with worse prognostic outcomes. RiskScore was an independent factor that could divide LUAD patients into low- and high-risk groups. Specifically, high-risk patients had poorer prognoses and higher immune escape. The Receiver Operating Characteristic (ROC) curve showed strong performance of the RiskScore model in estimating 1-, 3- and 5-year survival in both training and validation sets. Finally, an optimized nomogram model was developed and contributed the most to the prognostic prediction in LUAD. Conclusion: The current model could help effectively identify high-risk patients and suggest the most effective drug and treatment candidates for patients with LUAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形曼青应助wipmzxu采纳,获得10
3秒前
wei发布了新的文献求助10
3秒前
4秒前
JIE完成签到 ,获得积分10
6秒前
keepory86完成签到,获得积分10
7秒前
光亮若翠完成签到,获得积分10
10秒前
ao20000106发布了新的文献求助10
10秒前
香蕉觅云应助Temperature采纳,获得10
14秒前
Nostalgia完成签到,获得积分10
14秒前
green完成签到,获得积分10
18秒前
东西南北完成签到,获得积分10
24秒前
木木三发布了新的文献求助10
24秒前
沉默完成签到 ,获得积分10
26秒前
26秒前
蛋仔发布了新的文献求助10
33秒前
34秒前
35秒前
小毛毛想睡觉完成签到 ,获得积分10
35秒前
SOS完成签到,获得积分20
36秒前
lonely完成签到,获得积分10
36秒前
annafan完成签到,获得积分10
36秒前
金蛋蛋完成签到 ,获得积分10
36秒前
友好的流沙完成签到 ,获得积分10
37秒前
wipmzxu发布了新的文献求助10
37秒前
斯文败类应助大方荟采纳,获得10
37秒前
无情的冰香完成签到 ,获得积分10
38秒前
东陈西就完成签到,获得积分10
39秒前
烟花应助木木三采纳,获得30
39秒前
凉薄少年应助lonely采纳,获得20
40秒前
平淡的天宇应助SOS采纳,获得10
41秒前
CCL完成签到,获得积分10
41秒前
TG303完成签到,获得积分10
45秒前
iNk应助HM采纳,获得10
45秒前
myj完成签到 ,获得积分10
45秒前
蛋仔完成签到,获得积分10
45秒前
46秒前
虚幻的夜天完成签到 ,获得积分10
46秒前
Michael完成签到,获得积分10
47秒前
有魅力沛岚发布了新的文献求助100
47秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511078
关于积分的说明 11156200
捐赠科研通 3245691
什么是DOI,文献DOI怎么找? 1793100
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268