Identification and Verification of Metabolism-related Immunotherapy Features and Prognosis in Lung Adenocarcinoma

列线图 比例危险模型 腺癌 单变量 肿瘤科 生存分析 生物 肺癌 基因签名 接收机工作特性 恶性肿瘤 基因 内科学 生物信息学 癌症 多元统计 医学 基因表达 遗传学 计算机科学 机器学习
作者
Junfang Luo,Jinlu An,Rongyan Jia,Cong Liu,Yang Zhang
出处
期刊:Current Medicinal Chemistry [Bentham Science Publishers]
卷期号:31 被引量:5
标识
DOI:10.2174/0109298673293414240314043529
摘要

Background: Lung cancer is a frequent malignancy with a poor prognosis. Extensive metabolic alterations are involved in carcinogenesis and could, therefore, serve as a reliable prognostic phenotype. Aims: Our study aimed to develop a prognosis signature and explore the relationship between metabolic characteristic-related signature and immune infiltration in lung adenocarcinoma (LUAD) Objective: TCGA-LUAD and GSE31210 datasets were used as a training set and a validation set, respectively. Method: A total of 513 LUAD samples collected from The Cancer Genome Atlas database (TCGA-LUAD) were used as a training dataset. Molecular subtypes were classified by consensus clustering, and prognostic genes related to metabolism were analyzed based on Differentially Expressed Genes (DEGs), Protein-Protein Interaction (PPI) network, the univariate/multivariate- and Lasso- Cox regression analysis. Results: Two molecular subtypes with significant survival differences were divided by the metabolism gene sets. The DEGs between the two subtypes were identified by integrated analysis and then used to develop an 8-gene signature (TTK, TOP2A, KIF15, DLGAP5, PLK1, PTTG1, ECT2, and ANLN) for predicting LUAD prognosis. Overexpression of the 8 genes was significantly correlated with worse prognostic outcomes. RiskScore was an independent factor that could divide LUAD patients into low- and high-risk groups. Specifically, high-risk patients had poorer prognoses and higher immune escape. The Receiver Operating Characteristic (ROC) curve showed strong performance of the RiskScore model in estimating 1-, 3- and 5-year survival in both training and validation sets. Finally, an optimized nomogram model was developed and contributed the most to the prognostic prediction in LUAD. Conclusion: The current model could help effectively identify high-risk patients and suggest the most effective drug and treatment candidates for patients with LUAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈安莲发布了新的文献求助10
刚刚
刚刚
Xue0129完成签到,获得积分10
1秒前
1秒前
xiaozz发布了新的文献求助30
1秒前
1秒前
万能图书馆应助坚持坚持采纳,获得10
2秒前
岳哈哈完成签到 ,获得积分10
2秒前
隐形曼青应助dddd采纳,获得10
3秒前
4秒前
4秒前
5秒前
zhenggggg完成签到,获得积分10
5秒前
123zyx完成签到,获得积分10
5秒前
高贵觅山发布了新的文献求助30
5秒前
无花果应助yuzuzu采纳,获得10
6秒前
6秒前
桃子发布了新的文献求助10
7秒前
8秒前
汶南完成签到 ,获得积分10
8秒前
8秒前
慧慧吴发布了新的文献求助10
9秒前
seven完成签到,获得积分10
9秒前
浮游应助务实思卉采纳,获得10
9秒前
Xxx完成签到,获得积分10
10秒前
10秒前
10秒前
加油加油应助PP采纳,获得10
11秒前
徐天睿发布了新的文献求助10
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
向日葵完成签到,获得积分10
13秒前
66发布了新的文献求助10
13秒前
JamesPei应助宋xx采纳,获得10
14秒前
浮游应助优雅冷风采纳,获得10
14秒前
14秒前
Xxx发布了新的文献求助10
14秒前
水之虞完成签到,获得积分10
15秒前
木子相心发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1500
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123418
求助须知:如何正确求助?哪些是违规求助? 4327877
关于积分的说明 13485721
捐赠科研通 4162142
什么是DOI,文献DOI怎么找? 2281236
邀请新用户注册赠送积分活动 1282659
关于科研通互助平台的介绍 1221782