Identification and Verification of Metabolism-related Immunotherapy Features and Prognosis in Lung Adenocarcinoma

列线图 比例危险模型 腺癌 单变量 肿瘤科 生存分析 生物 肺癌 基因签名 接收机工作特性 恶性肿瘤 基因 内科学 生物信息学 癌症 多元统计 医学 基因表达 遗传学 计算机科学 机器学习
作者
Junfang Luo,Jinlu An,Rongyan Jia,Cong Liu,Yang Zhang
出处
期刊:Current Medicinal Chemistry [Bentham Science]
卷期号:31 被引量:5
标识
DOI:10.2174/0109298673293414240314043529
摘要

Background: Lung cancer is a frequent malignancy with a poor prognosis. Extensive metabolic alterations are involved in carcinogenesis and could, therefore, serve as a reliable prognostic phenotype. Aims: Our study aimed to develop a prognosis signature and explore the relationship between metabolic characteristic-related signature and immune infiltration in lung adenocarcinoma (LUAD) Objective: TCGA-LUAD and GSE31210 datasets were used as a training set and a validation set, respectively. Method: A total of 513 LUAD samples collected from The Cancer Genome Atlas database (TCGA-LUAD) were used as a training dataset. Molecular subtypes were classified by consensus clustering, and prognostic genes related to metabolism were analyzed based on Differentially Expressed Genes (DEGs), Protein-Protein Interaction (PPI) network, the univariate/multivariate- and Lasso- Cox regression analysis. Results: Two molecular subtypes with significant survival differences were divided by the metabolism gene sets. The DEGs between the two subtypes were identified by integrated analysis and then used to develop an 8-gene signature (TTK, TOP2A, KIF15, DLGAP5, PLK1, PTTG1, ECT2, and ANLN) for predicting LUAD prognosis. Overexpression of the 8 genes was significantly correlated with worse prognostic outcomes. RiskScore was an independent factor that could divide LUAD patients into low- and high-risk groups. Specifically, high-risk patients had poorer prognoses and higher immune escape. The Receiver Operating Characteristic (ROC) curve showed strong performance of the RiskScore model in estimating 1-, 3- and 5-year survival in both training and validation sets. Finally, an optimized nomogram model was developed and contributed the most to the prognostic prediction in LUAD. Conclusion: The current model could help effectively identify high-risk patients and suggest the most effective drug and treatment candidates for patients with LUAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
xiaotianshi完成签到,获得积分20
1秒前
2秒前
3秒前
4秒前
穆千发布了新的文献求助10
6秒前
嘉嘉sone完成签到,获得积分10
7秒前
嘿嘿发布了新的文献求助10
8秒前
Muller完成签到,获得积分10
8秒前
青火完成签到,获得积分10
8秒前
9秒前
Ava应助felix采纳,获得10
9秒前
不再方里发布了新的文献求助10
9秒前
瑞一杯小黄油拿铁完成签到,获得积分10
9秒前
喻紫寒完成签到 ,获得积分10
9秒前
10秒前
sage7发布了新的文献求助10
10秒前
斯文败类应助QTQ采纳,获得30
10秒前
王富贵完成签到,获得积分10
11秒前
11秒前
哭泣觅儿完成签到,获得积分10
11秒前
lukawa完成签到,获得积分10
12秒前
嘉嘉sone发布了新的文献求助30
13秒前
13秒前
文耳东完成签到,获得积分10
14秒前
领导范儿应助落后钢铁侠采纳,获得10
14秒前
Sayhai完成签到,获得积分10
14秒前
淡淡路灯完成签到 ,获得积分20
16秒前
杨涵发布了新的文献求助10
16秒前
Jiangtao应助weixi4457采纳,获得10
17秒前
17秒前
17秒前
18秒前
18秒前
19秒前
19秒前
tanlaker完成签到,获得积分10
19秒前
19秒前
秋蚓发布了新的文献求助50
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511604
求助须知:如何正确求助?哪些是违规求助? 4606201
关于积分的说明 14498401
捐赠科研通 4541561
什么是DOI,文献DOI怎么找? 2488537
邀请新用户注册赠送积分活动 1470610
关于科研通互助平台的介绍 1442936