Identification and Verification of Metabolism-related Immunotherapy Features and Prognosis in Lung Adenocarcinoma

列线图 比例危险模型 腺癌 单变量 肿瘤科 生存分析 生物 肺癌 基因签名 接收机工作特性 恶性肿瘤 基因 内科学 生物信息学 癌症 多元统计 医学 基因表达 遗传学 计算机科学 机器学习
作者
Junfang Luo,Jinlu An,Rongyan Jia,Cong Liu,Yang Zhang
出处
期刊:Current Medicinal Chemistry [Bentham Science Publishers]
卷期号:31 被引量:4
标识
DOI:10.2174/0109298673293414240314043529
摘要

Background: Lung cancer is a frequent malignancy with a poor prognosis. Extensive metabolic alterations are involved in carcinogenesis and could, therefore, serve as a reliable prognostic phenotype. Aims: Our study aimed to develop a prognosis signature and explore the relationship between metabolic characteristic-related signature and immune infiltration in lung adenocarcinoma (LUAD) Objective: TCGA-LUAD and GSE31210 datasets were used as a training set and a validation set, respectively. Method: A total of 513 LUAD samples collected from The Cancer Genome Atlas database (TCGA-LUAD) were used as a training dataset. Molecular subtypes were classified by consensus clustering, and prognostic genes related to metabolism were analyzed based on Differentially Expressed Genes (DEGs), Protein-Protein Interaction (PPI) network, the univariate/multivariate- and Lasso- Cox regression analysis. Results: Two molecular subtypes with significant survival differences were divided by the metabolism gene sets. The DEGs between the two subtypes were identified by integrated analysis and then used to develop an 8-gene signature (TTK, TOP2A, KIF15, DLGAP5, PLK1, PTTG1, ECT2, and ANLN) for predicting LUAD prognosis. Overexpression of the 8 genes was significantly correlated with worse prognostic outcomes. RiskScore was an independent factor that could divide LUAD patients into low- and high-risk groups. Specifically, high-risk patients had poorer prognoses and higher immune escape. The Receiver Operating Characteristic (ROC) curve showed strong performance of the RiskScore model in estimating 1-, 3- and 5-year survival in both training and validation sets. Finally, an optimized nomogram model was developed and contributed the most to the prognostic prediction in LUAD. Conclusion: The current model could help effectively identify high-risk patients and suggest the most effective drug and treatment candidates for patients with LUAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
baochao发布了新的文献求助10
1秒前
2秒前
Ry发布了新的文献求助10
4秒前
5秒前
5秒前
瓦力完成签到 ,获得积分10
6秒前
lvyoyo完成签到,获得积分20
6秒前
7秒前
7秒前
cxqygdn完成签到,获得积分10
7秒前
8秒前
Barry驳回了顾矜应助
8秒前
整齐千柳完成签到,获得积分10
9秒前
huanir99发布了新的文献求助10
9秒前
11秒前
11秒前
12秒前
小菜鸡发布了新的文献求助10
12秒前
苏远山爱吃西红柿完成签到 ,获得积分10
13秒前
lee完成签到,获得积分10
14秒前
14秒前
飞飞完成签到,获得积分20
15秒前
huanir99完成签到,获得积分10
15秒前
MADKAI发布了新的文献求助10
16秒前
赘婿应助Tristan采纳,获得10
17秒前
聪明的破茧完成签到,获得积分10
19秒前
穆振云发布了新的文献求助30
19秒前
20秒前
23秒前
orixero应助TWD采纳,获得10
23秒前
25秒前
little佳完成签到,获得积分10
26秒前
图图应助专注的曼容采纳,获得30
27秒前
27秒前
DYL完成签到,获得积分10
28秒前
飘逸问薇发布了新的文献求助10
28秒前
可爱的函函应助小菜鸡采纳,获得10
29秒前
29秒前
旺仔不甜完成签到,获得积分10
30秒前
Yogita完成签到,获得积分10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740661
求助须知:如何正确求助?哪些是违规求助? 3283536
关于积分的说明 10035580
捐赠科研通 3000305
什么是DOI,文献DOI怎么找? 1646450
邀请新用户注册赠送积分活动 783627
科研通“疑难数据库(出版商)”最低求助积分说明 750411