清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identification and Verification of Metabolism-related Immunotherapy Features and Prognosis in Lung Adenocarcinoma

列线图 比例危险模型 腺癌 单变量 肿瘤科 生存分析 生物 肺癌 基因签名 接收机工作特性 恶性肿瘤 基因 内科学 生物信息学 癌症 多元统计 医学 基因表达 遗传学 计算机科学 机器学习
作者
Junfang Luo,Jinlu An,Rongyan Jia,Cong Liu,Yang Zhang
出处
期刊:Current Medicinal Chemistry [Bentham Science]
卷期号:31 被引量:5
标识
DOI:10.2174/0109298673293414240314043529
摘要

Background: Lung cancer is a frequent malignancy with a poor prognosis. Extensive metabolic alterations are involved in carcinogenesis and could, therefore, serve as a reliable prognostic phenotype. Aims: Our study aimed to develop a prognosis signature and explore the relationship between metabolic characteristic-related signature and immune infiltration in lung adenocarcinoma (LUAD) Objective: TCGA-LUAD and GSE31210 datasets were used as a training set and a validation set, respectively. Method: A total of 513 LUAD samples collected from The Cancer Genome Atlas database (TCGA-LUAD) were used as a training dataset. Molecular subtypes were classified by consensus clustering, and prognostic genes related to metabolism were analyzed based on Differentially Expressed Genes (DEGs), Protein-Protein Interaction (PPI) network, the univariate/multivariate- and Lasso- Cox regression analysis. Results: Two molecular subtypes with significant survival differences were divided by the metabolism gene sets. The DEGs between the two subtypes were identified by integrated analysis and then used to develop an 8-gene signature (TTK, TOP2A, KIF15, DLGAP5, PLK1, PTTG1, ECT2, and ANLN) for predicting LUAD prognosis. Overexpression of the 8 genes was significantly correlated with worse prognostic outcomes. RiskScore was an independent factor that could divide LUAD patients into low- and high-risk groups. Specifically, high-risk patients had poorer prognoses and higher immune escape. The Receiver Operating Characteristic (ROC) curve showed strong performance of the RiskScore model in estimating 1-, 3- and 5-year survival in both training and validation sets. Finally, an optimized nomogram model was developed and contributed the most to the prognostic prediction in LUAD. Conclusion: The current model could help effectively identify high-risk patients and suggest the most effective drug and treatment candidates for patients with LUAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
明理囧完成签到 ,获得积分10
16秒前
19秒前
sage_kakarotto完成签到 ,获得积分10
22秒前
31秒前
霸气师完成签到 ,获得积分10
39秒前
56秒前
VDC发布了新的文献求助10
1分钟前
贰壹完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
紫熊发布了新的文献求助10
1分钟前
xiw完成签到,获得积分10
2分钟前
潜行者完成签到 ,获得积分10
2分钟前
2分钟前
忞航完成签到 ,获得积分10
2分钟前
zoey发布了新的文献求助10
3分钟前
Ttimer完成签到,获得积分10
3分钟前
VDC发布了新的文献求助10
3分钟前
2223完成签到,获得积分10
3分钟前
科研通AI6.1应助zoey采纳,获得10
3分钟前
秦时明月完成签到,获得积分10
3分钟前
紫熊发布了新的文献求助10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
冰凌心恋完成签到,获得积分0
3分钟前
紫熊发布了新的文献求助10
3分钟前
4分钟前
紫熊发布了新的文献求助10
4分钟前
4分钟前
方白秋完成签到,获得积分0
4分钟前
积极香菜完成签到,获得积分10
4分钟前
精灵完成签到,获得积分10
4分钟前
科研通AI6.1应助积极香菜采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764558
求助须知:如何正确求助?哪些是违规求助? 5552581
关于积分的说明 15406320
捐赠科研通 4899648
什么是DOI,文献DOI怎么找? 2635883
邀请新用户注册赠送积分活动 1584051
关于科研通互助平台的介绍 1539235