Identification and Verification of Metabolism-related Immunotherapy Features and Prognosis in Lung Adenocarcinoma

列线图 比例危险模型 腺癌 单变量 肿瘤科 生存分析 生物 肺癌 基因签名 接收机工作特性 恶性肿瘤 基因 内科学 生物信息学 癌症 多元统计 医学 基因表达 遗传学 计算机科学 机器学习
作者
Junfang Luo,Jinlu An,Rongyan Jia,Cong Liu,Yang Zhang
出处
期刊:Current Medicinal Chemistry [Bentham Science]
卷期号:31 被引量:3
标识
DOI:10.2174/0109298673293414240314043529
摘要

Background: Lung cancer is a frequent malignancy with a poor prognosis. Extensive metabolic alterations are involved in carcinogenesis and could, therefore, serve as a reliable prognostic phenotype. Aims: Our study aimed to develop a prognosis signature and explore the relationship between metabolic characteristic-related signature and immune infiltration in lung adenocarcinoma (LUAD) Objective: TCGA-LUAD and GSE31210 datasets were used as a training set and a validation set, respectively. Method: A total of 513 LUAD samples collected from The Cancer Genome Atlas database (TCGA-LUAD) were used as a training dataset. Molecular subtypes were classified by consensus clustering, and prognostic genes related to metabolism were analyzed based on Differentially Expressed Genes (DEGs), Protein-Protein Interaction (PPI) network, the univariate/multivariate- and Lasso- Cox regression analysis. Results: Two molecular subtypes with significant survival differences were divided by the metabolism gene sets. The DEGs between the two subtypes were identified by integrated analysis and then used to develop an 8-gene signature (TTK, TOP2A, KIF15, DLGAP5, PLK1, PTTG1, ECT2, and ANLN) for predicting LUAD prognosis. Overexpression of the 8 genes was significantly correlated with worse prognostic outcomes. RiskScore was an independent factor that could divide LUAD patients into low- and high-risk groups. Specifically, high-risk patients had poorer prognoses and higher immune escape. The Receiver Operating Characteristic (ROC) curve showed strong performance of the RiskScore model in estimating 1-, 3- and 5-year survival in both training and validation sets. Finally, an optimized nomogram model was developed and contributed the most to the prognostic prediction in LUAD. Conclusion: The current model could help effectively identify high-risk patients and suggest the most effective drug and treatment candidates for patients with LUAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
骆靖发布了新的文献求助10
2秒前
3秒前
充电宝应助MOON采纳,获得10
4秒前
爱炸鸡也爱烧烤完成签到 ,获得积分10
6秒前
或习完成签到,获得积分20
6秒前
烁丶完成签到 ,获得积分10
7秒前
酷波er应助小田采纳,获得10
7秒前
7秒前
猫咪完成签到,获得积分20
8秒前
12秒前
Owen应助OnMyWorldside采纳,获得10
12秒前
13秒前
vivian26发布了新的文献求助10
13秒前
共享精神应助小盘子采纳,获得10
15秒前
朝暮发布了新的文献求助30
15秒前
潦草完成签到 ,获得积分20
16秒前
彭于彦祖应助科研通管家采纳,获得30
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
或习发布了新的文献求助10
17秒前
starofjlu应助科研通管家采纳,获得20
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
彭于彦祖应助科研通管家采纳,获得100
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
目害完成签到,获得积分10
18秒前
thchiang完成签到 ,获得积分10
19秒前
研友_nqa7On发布了新的文献求助30
19秒前
20秒前
tutu完成签到,获得积分10
21秒前
马克叔叔发布了新的文献求助30
22秒前
苹果煎饼完成签到,获得积分10
23秒前
LARS应助1kego采纳,获得10
23秒前
Jin完成签到 ,获得积分10
24秒前
脑洞疼应助或习采纳,获得10
25秒前
27秒前
27秒前
CodeCraft应助thchiang采纳,获得10
27秒前
马克叔叔完成签到,获得积分10
29秒前
英俊未来完成签到,获得积分10
29秒前
赘婿应助arinnna采纳,获得10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159888
求助须知:如何正确求助?哪些是违规求助? 2810893
关于积分的说明 7889801
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630761
版权声明 602012