Identification and Verification of Metabolism-related Immunotherapy Features and Prognosis in Lung Adenocarcinoma

列线图 比例危险模型 腺癌 单变量 肿瘤科 生存分析 生物 肺癌 基因签名 接收机工作特性 恶性肿瘤 基因 内科学 生物信息学 癌症 多元统计 医学 基因表达 遗传学 计算机科学 机器学习
作者
Junfang Luo,Jinlu An,Rongyan Jia,Cong Liu,Yang Zhang
出处
期刊:Current Medicinal Chemistry [Bentham Science]
卷期号:31 被引量:5
标识
DOI:10.2174/0109298673293414240314043529
摘要

Background: Lung cancer is a frequent malignancy with a poor prognosis. Extensive metabolic alterations are involved in carcinogenesis and could, therefore, serve as a reliable prognostic phenotype. Aims: Our study aimed to develop a prognosis signature and explore the relationship between metabolic characteristic-related signature and immune infiltration in lung adenocarcinoma (LUAD) Objective: TCGA-LUAD and GSE31210 datasets were used as a training set and a validation set, respectively. Method: A total of 513 LUAD samples collected from The Cancer Genome Atlas database (TCGA-LUAD) were used as a training dataset. Molecular subtypes were classified by consensus clustering, and prognostic genes related to metabolism were analyzed based on Differentially Expressed Genes (DEGs), Protein-Protein Interaction (PPI) network, the univariate/multivariate- and Lasso- Cox regression analysis. Results: Two molecular subtypes with significant survival differences were divided by the metabolism gene sets. The DEGs between the two subtypes were identified by integrated analysis and then used to develop an 8-gene signature (TTK, TOP2A, KIF15, DLGAP5, PLK1, PTTG1, ECT2, and ANLN) for predicting LUAD prognosis. Overexpression of the 8 genes was significantly correlated with worse prognostic outcomes. RiskScore was an independent factor that could divide LUAD patients into low- and high-risk groups. Specifically, high-risk patients had poorer prognoses and higher immune escape. The Receiver Operating Characteristic (ROC) curve showed strong performance of the RiskScore model in estimating 1-, 3- and 5-year survival in both training and validation sets. Finally, an optimized nomogram model was developed and contributed the most to the prognostic prediction in LUAD. Conclusion: The current model could help effectively identify high-risk patients and suggest the most effective drug and treatment candidates for patients with LUAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Jared应助科研通管家采纳,获得10
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
Jared应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
KYT应助科研通管家采纳,获得10
2秒前
Jared应助科研通管家采纳,获得10
2秒前
Hanoi347应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
Jared应助科研通管家采纳,获得10
2秒前
Stella应助科研通管家采纳,获得10
2秒前
zzz应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
zw完成签到,获得积分10
4秒前
务实寄松发布了新的文献求助10
5秒前
orixero应助QinQin采纳,获得10
5秒前
mh完成签到,获得积分10
7秒前
Roman完成签到,获得积分10
7秒前
zmj完成签到,获得积分10
8秒前
yuy完成签到,获得积分20
8秒前
浮游应助wwaakk采纳,获得10
8秒前
浮雨微清发布了新的文献求助10
9秒前
优雅麦片发布了新的文献求助10
9秒前
9秒前
霜降发布了新的文献求助10
10秒前
11秒前
英俊的菲鹰完成签到,获得积分10
11秒前
Jasper应助yuy采纳,获得10
12秒前
13秒前
若ruofeng发布了新的文献求助30
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580794
求助须知:如何正确求助?哪些是违规求助? 4665572
关于积分的说明 14756655
捐赠科研通 4607084
什么是DOI,文献DOI怎么找? 2528118
邀请新用户注册赠送积分活动 1497448
关于科研通互助平台的介绍 1466379